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Abstract In their 2010 (Erkenntnis 73:393–412) paper, Dizadji-Bahmani, Frigg,
and Hartmann (henceforth ‘DFH’) argue that the generalized version of the Nagel–
Schaffner model that they have developed (henceforth ‘the GNS’) is the right one for
intertheoretic reduction, i.e. the kind of reduction that involves theories with largely
overlapping domains of application. Drawing on the GNS, DFH (Synthese 179:321–
338, 2011) presented a Bayesian analysis of the confirmatory relation between the
reducing theory and the reduced theory and argued that, post-reduction, evidence con-
firming the reducing theory also confirms the reduced theory and evidence confirming
the reduced theory also confirms the reducing theory, which meets the expectations
one has about theories with largely overlapping domains. In this paper, I argue that the
Bayesian analysis presented by DFH (Synthese 179:321–338, 2011) faces difficulties.
In particular, I argue that the conditional probabilities that DFH introduce to model
the bridge law entail consequences that run against the GNS. However, I also argue
that, given slight modifications of the analysis that are in agreement with the GNS, one
is able to account for these difficulties and, moreover, one is able to more rigorously
analyse the confirmatory relation between the reducing and the reduced theory.
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1 Introduction

Synchronic intertheoretic reduction, that is, “the reductive relation between pairs of
theories which have the same (or largely overlapping) domains of application and
which are simultaneously valid to various extents,” has been an important issue in phi-
losophy of science (DFH2010, p. 393). A canonical example of purportedly successful
reduction of this kind is the reduction of thermodynamics to statistical mechanics
(cf. DFH 2010, p. 393, 2011, p. 322; Batterman 2002, pp. 17, 62–63; Sklar 1993,
pp. 333ff.). Nagel (1961), and later Schaffner (1967), famously addressed the issue
of intertheoretic reduction and offered what is usually called the Nagelian model of
reduction. The core idea of this model is that a theory TA reduces a theory TB if and
only if TB can be logically derived from TA (or at least that a close cousin of TB can be
logically derived from TA) with the help of bridge laws. While usually considered as a
philosophical background for the purported reduction of statistical mechanics to ther-
modynamics, this model has been burdened with criticisms that led to a widely shared
opinion that the Nagelian model of reduction is untenable and obsolete (e.g. Darden
and Maull 1977; Primas 1998; Winther 2009).

However, several defenses of Nagelian reduction have been put forward in recent
times. The GNS account is tailored as one. DFH (2010) built on and developed a more
sophisticated Nagelian model of reduction (the GNS) that, so the argument goes,
successfully accounts for criticisms attached to the Nagelian model of reduction.

One important facet of the GNS is that, given the intertheoretic link that the GNS
provides, the two theories are confirmatory of each other: evidence confirming one
theory also confirms the other theory. In their 2011 paper DFH analyse this confirma-
tory relation in terms of Bayesian confirmation theory. In the present paper I argue
that this analysis suffers from several difficulties and I propose an alternative Bayesian
analysis of the confirmatory relation.

In what follows, I introduce the GNS (Sect. 2.1) and provide an example of reduc-
tion to illustrate the workings of the GNS (Sect. 2.2). After that, I discuss philosophical
motivations for the GNS (Sect. 2.3), and present a Bayesian analysis of the confirma-
tory relation between the reducing and the reduced theory given by DFH (2011) (Sect.
2.4). Next, I indicate several difficulties this analysis faces (Sect. 3). I then present an
(obvious) revision that accounts for some of the difficulties in the original analysis, but,
unfortunately, not all of them (Sect. 4.1). Further, I propose a slightly more modified
Bayesian analysis of the confirmatory relation between the theories and argue that,
while being more rigorous, it also successfully deals with the problems that DFH’s
Bayesian analysis faces and it is a better fit to the GNS (Sect. 4.2). Lastly, I present
conclusions (Sect. 5).

2 The GNS model and DFH’s Bayesian analysis of it

2.1 The generalized Nagel–Schaffner model of reduction

The two theories in the reductive relation are often referred to as the reducing or
fundamental theory (TF ) and the reduced or phenomenological theory (TP ). On the
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GNS, both TF and TP have a set of empirical propositions associated with them,

namely TF := {T(1)
F , . . . ,T

(nF )

F } and TP := {T(1)
P , . . . ,T

(nP )

P }, where (1) . . . (nF ) and
(1) . . . (nP) are indices (DFH 2010, pp. 397–399, 2011, p. 323). Now, according to
this account, the reduction of TP to TF is captured by the following three steps (DFH
2011, p. 323):

1. Introduce boundary conditions and auxiliary assumption. Using these and TF

derive a special version of each element T(i)
F in TF . Dub these T∗(i)

F with T ∗
F

:=
{T∗(1)

F , . . . ,T
∗(nF )

F }.
2. As TF and TP are formulated in different vocabularies, in order to connect the

terms of the two theories one needs bridge laws. Adopt these laws and substitute

terms in T ∗
F
according to these laws. This yields a set T ∗

P
:= {T∗(1)

P , . . . ,T
∗(nP )

P }.
3. Show that each element of T ∗

P
is strongly analogous to the corresponding element

in TP .
1

A few remarks on the three steps. First, the boundary conditions and auxiliary
assumptions stated in the first step describe the particular setup related to the reducing
theory. For instance, in the case of statistical mechanics these are assumptions about
mechanical properties of the gas molecules. In order to preclude spurious cases of
reduction, DFH (2011, p. 408) impose two caveats on these assumptions: TP must
not follow from the auxiliary assumptions alone (otherwise the reduction would be
trivialized) and auxiliary assumptions cannot be foreign to the conceptual apparatus
of TF (otherwise the reduction would be cheap as there would be no restrictions on
what assumptions are allowable). Second, the status of bridge laws is still highly
debated in philosophy of science. On the GNS account they are factual claims posited
by scientists working in a particular field (DFH 2010, p. 404, 2011, pp. 328–329).2

For the purposes of this paper we need concern ourselves with the status of bridge
laws. However, it is important to note that as bridge laws, according to the GNS, are
posited by different scientists, it could happen that different scientists assign different
credences to a particular bridge law (DFH 2011, pp. 328–329). Third, the relationship
between T ∗

P
, on the one side, and T ∗

F
and bridge laws, on the other, is of a logical

kind: T ∗
P
is a deductive consequence of T ∗

F
and bridge laws (DFH 2010, pp. 398, 406).

Fourth, the notion of strong analogy mentioned in step 3 seems to be a fairly vague
one. In order to make it more precise, DFH (2011, p. 409) put the following constrains
on T ∗

P
: it has to share all the essential terms with TP and it has to be at least equally

empirically adequate as TP . Lastly, the GNS allows for partial reductions (DFH 2010,
p. 399). Namely, if only some terms in T ∗

P
are connected to terms in T ∗

F
and only some

statements of T ∗
P
can be deduced from T ∗

F
and bridge laws, then the reduction of TP

still obtains, though a partial one: only those statements that are deduced are reduced.

1 Note that on the GNS one theory reduces to the other in virtue of empirical propositions (i.e. laws that a
theory has). However, proponents of the GNS do not commit themselves to the view that “a theory just is
[DFH’s italics] a set of laws, i.e. TA is not identified with TA ” (DFH 2011, p. 323).
2 An example of the bridge law can be found in Sect. 2.2. Another example of the bridge law is V = E,
where V is the light vector from the physical optical theory of light and E is the electric force vector from
the theory of electromagnetic radiation. This bridge law is used to derive a number of laws of the physical
optical theory of light from Maxwell’s equations (see Schaffner 2012, pp. 551–559).
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2.2 An example of reduction à la GNS

The derivation of the Boyle–Charles Law from the kinetic theory of gases is often
mentioned as a clear example of Nagelian-style reduction. In this section I briefly
present the derivation and the way it relates to the GNS account of reduction as
outlined above.3

According to the kinetic theory of gases, a gas is a collection of particles obeying
Newton’s laws of mechanics. Consider a gas with a large number (n) of sphere-like
particlesmoving in all directionswith a fixedmass (m) that interact perfectly elastically
with each other and with the walls of a container of volume (V ) where the gas is kept.
Say we are interested in the force these particles exert on a wall of the container. A
way of expressing this force is by talking about the force per unit area; that is to say,
we can use the definition of pressure (p) from Newtonian physics: p = F/A, where
F is the force and A is the area of the wall. Employing the assumption that all particles
are perfectly elastic, one is able to show that pressure on the wall is:

p = m n

V
〈v2x 〉, (1)

where vx is a particle’s velocity in x-direction and 〈v2x 〉 is the square of vx averaged
over all particles (i.e. 〈v2x 〉 is the mean v2x in the gas). Assuming that there is nothing
special about x-direction, the average motion of particles in one direction is going to
be equal to the average motion of particles in the other two directions:

〈v2x 〉 = 〈v2y〉 = 〈v2z 〉. (2)

Since by definition v2 = v2x + v2y + v2z , then one can show that:

〈v2x 〉 = 1

3
〈v2x + v2y + v2z 〉 = 1

3
〈v2〉. (3)

Eq. (1) then becomes:

p = m n

3V
〈v2〉. (4)

From Newtonian mechanics we also have that the kinetic energy of a particle, Ekin,
is equal to half the square of its velocity times its mass: Ekin = m v2/2. Therefore, the
mean kinetic energy of a gas is: 〈Ekin〉 = m 〈v2〉/2. Substituting in Eq. (4) we finally
have:

p V = 2n

3
〈Ekin〉. (5)

3 In presenting the derivation, I closely follow Feynman et al. (1964, chapter 39). In parts, I also rely on
DFH (2010, pp. 395–396), Dizadji-Bahmani (2011, pp. 31–33, 130–138), Greiner et al. (1997, pp. 6–11),
and Pauli (1973, pp. 94–103).
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Venturing now into thermodynamics, we find concepts like temperature and (ther-
mal) equilibrium. We know from experience that if we let two systems with different
temperatures interact long enough, they will end up having the same temperature:
immersing a hot rod of iron into an ice-cold bucket of water will result in the rod
becoming cooler and the water becoming hotter, until eventually both the rod and the
water have the same temperature. Equal temperature of two systems (e.g. two gases)
then is just the final condition (equilibrium) when they have been interacting with each
other long enough.

What can we say about two gases when they are in equilibrium from the point of
view of the kinetic theory of gases? To answer this question let us imagine a situation
where two gases are in containers separated by a movable frictionless piston. In one
container the gas has n1 particles with mass m1 and velocity v1 and in the other
container the gas has n2 particles with mass m2 and velocity v2. The bombardment of
the piston from one side will result in the piston moving and compressing gas in the
other container, which leads to pressure build up in that container, which then leads to
more pressure exerted on the piston from that side, which leads to the piston moving
and compressing gas in the first container, which leads to pressure build up in that
container, and so forth. Eventually, the pressure on the piston from both sides will be
equal. Thus, using Eq. (5), the situation in the equilibrium looks as follows:

m1 n1
V1

〈v21〉 = m2 n2
V2

〈v22〉 ⇔ n1
V1

〈Ekin1〉 = n2
V2

〈Ekin2〉 (6)

Can we say something more about the gases in equilibrium than just that the pres-
sures they exert on the piston are equal? The answer is yes. Imagine that the particles
in the container on the left developed pressure by having low velocity but high density
(i.e. high n/V ) and the particles in the container on the right counter that pressure by
having high velocity but low density. Though the pressure is the same on both sides,
the piston does not stay still: it wiggles since it does not receive a steady pressure.
From time to time, the piston will get a big impulse from the right giving more speed
to the slower particles on the left. The slower particles will then move faster until they
balance the wiggling of the piston (the faster particles on the right will overall lose
energy, and consequently speed, to the collisions with the piston). At the equilibrium,
the piston is moving at such a mean square speed that it picks up roughly as much
energy from the particles as it puts back into them. At that point, the velocities of
the two gases will roughly be the same. Hence, at the equilibrium when two gases
are at the same temperature, not only are their pressures equal, but their mean kinetic
energies are equal as well.4 This allows us then to define temperature as a function of
the mean kinetic energy. However, the scale of temperature has been chosen so that
one cannot define temperature simply as the mean kinetic energy without introducing
a constant of proportionality. Availing ourselves of one such constant k (Boltzmann’s
constant), one is able to express temperature in terms of the mean kinetic energy:

4 Feynman et al. (1964, chapter 39) additionally provide a more comprehensive argument for why the mean
kinetic energies of the two gases ought to be equal using only the concepts from the kinetic theory of gases
and the definition of equilibrium. For the purposes of this paper, however, we need not go into such detail.
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T = 2

3k
〈Ekin〉. (7)

Substituting T for 〈Ekin〉 in Eq. (5) as per Eq. (7), one gets the famous Boyle–Charles
Law of thermodynamics:

p V = n k T . (8)

To summarise the derivation, we started from the kinetic theory of gases and with the
help of certain assumptions (e.g. the particles are perfectly elastic and the velocity
distribution is isotropic) we showed that Eq. (5) holds. Further, employing the concept
of (thermal) equilibrium,we argued that temperature relates to themean kinetic energy
of a gas as in Eq. (7). Ultimately, from Eqs. (5) and (7) we derived the Boyle–Charles
Law, given in Eq. (8).

The sketched derivation of the Boyle–Charles Law from the kinetic theory of gases
exemplifies the steps that capture the reduction according to the GNS. The reducing
theory (TF ) is the kinetic theory of gases and the reduced theory (TP ) is the Boyle–
Charles Law. Using TF and auxiliary assumptions (e.g. the particles are perfectly
elastic and the velocity distribution is isotropic) we derived Eq. (5) (T ∗

F
), i.e. a special

version of TF (note that T ∗
F
cannot be derived from the auxiliary assumptions alone

and that these assumptions are quite natural in the context of TF ). We have, further,
argued that one can connect the mean kinetic energy (a term in TF ) and temperature
(a term in TP ) via Eq. (7). Equation (7) is then the bridge law. From T ∗

F
and the bridge

law we derived TP . In this (simple) case of reduction, TP and T ∗
P
are one and the same,

so we need not show that TP and T ∗
P
are strongly analogous.

2.3 Why reduce?

In the previous two sections I have outlined one account of reduction and how it applies
to a particular case of reduction. But why should scientists be interested in reductions?
In the literature one comes across four recurrent reasons for why reduction is desirable:
explanation, parsimony, consistency, and confirmation. It is claimed that reductions are
a certain kind of explanation (Nagel 1961, p. 338) or, more specifically, that (partial)
reductions are causal mechanical explanations (Schaffner 2006, p. 385), where the
reducing theory explains the reduced theory; or where the reducing theory explains
why the reduced theory seemed correct (Sklar 1967, p. 112); or where the reducing
theory explains the phenomena of the reduced theory (van Riel 2014, p. 161); or even
where the reducing theory explains the empirical results that the reduced theory fails
to explain (Rohrlich 1989, p. 1168). On the GNS, however, explanations, though nice
to have, are not the primary aim of reduction; reductions are desirable even if they do
not provide explanations (DFH 2010, p. 407).

Parsimony is mentioned in the literature as another desirable product of reduction.
Sometimes, reduction can consist in the identification of entities or properties of the
reduced theory with entities or properties of the reducing theory, thus simplifying
the ontology we adhered to before the reduction (Sklar 1967, pp. 120–121, 1993,
pp. 361–362). For instance, a result of the reduction of the physical optical theory of
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light to the theory of electromagnetic radiation is the identification of light waves with
electromagnetic waves: light waves are electromagnetic waves (entity identification);
or, a result of the reduction of thermodynamics to statistical mechanics is the identi-
fication of the temperature of a system with the mean kinetic energy of a system: the
temperature is the mean kinetic energy (property identification).5 Now, to establish
these identity claims one needs bridge laws that express identity statements. However,
on the GNS, bridge laws need not express identity statements: they can express de
facto correlations and that would be sufficient for reduction (although not for estab-
lishing entity and property identifications). So, on the GNS, parsimony (understood
as simplification via entity and property identifications), though perhaps nice to have,
is also not the main goal of reduction.

The two main aims of reduction according to the GNS are consistency and con-
firmation (DFH 2010, pp. 405–406). In the case where two self-consistent and
well-confirmed theories with overlapping domains of application provide us with
descriptions of the world that contradict each other, one is interested in reconciling
these theories so that we end up with a consistent worldview (Nagel 1961, p. 341).
Reduction, so the argument goes, can help us to bring together these two theories.
To illustrate the point, consider thermodynamics and statistical mechanics. The two
theories mostly share the domain of application and are both self-consistent and well-
confirmed, but they give descriptions of theworldwhosemutual consistencywe are not
sure of. However, reduction makes sure that the two theories become consistent with
each other: if T ∗

P
(a near enough cousin of TP , i.e. of thermodynamics in the example)

can be deduced from T ∗
F
(which is just TF , i.e. statistical mechanics, plus auxiliary

assumptions) and bridge laws, then the two theories are consistent, for deduction is
sufficient to establish consistency.

In addition to establishing consistency, reduction also makes sure that, given
two theories with largely overlapping domains (like thermodynamics and statistical
mechanics), evidence confirming one theory also confirms the other, which is what
one would expect to be the case (DFH 2010, p. 406; see also Nagel 1961, p. 361,
Sarkar 2015, p. 47, and van Riel 2014, pp. 199–200). The rationale is the follow-
ing. As on the GNS TP and T ∗

P
are strongly analogous, supporting evidence for TP

would also be supporting evidence for T ∗
P
, and since T ∗

P
is a deductive consequence of

bridge laws and T ∗
F
(i.e. TF plus plausible auxiliary assumptions), one would expect

that same evidence to confirm TF . On the other hand, since a deductive consequence
of a hypothesis inherits that hypothesis’s confirmatory support, evidence supporting
TF would also support T ∗

P
, which would in turn support TP . It is these confirmatory

relations between theories that most interest us in the present paper.

5 It is worth pointing out that in both entity identification and property identification we simplify our
previously held ontology not by eliminating unnecessary entities or properties of the reduced theory (for
instance, eliminating light waves and temperature), but rather by assimilating these entities and properties
via identification to the corresponding entities and properties of the reducing theory. So, there are still light
waves in the world, but instead of two classes of entities—light waves and electromagnetic waves—there
is only one (see Sklar 1967, p. 121, 1993, pp. 361–362).
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Fig. 1 An example of a
Bayesian network EH

2.4 DFH’s Bayesian analysis

In their 2011 paper, DFH argue that the confirmatory relation between the two theories
holds if one adopts a Bayesian framework. According to this framework, evidence (E)
confirms a hypothesis (H) if P(H | E) > P(H); E disconfirmsH if P(H | E) < P(H);
and E is irrelevant for H if P(H | E) = P(H). From the probability calculus we further
have that if E confirms H, then l := P(E | ¬H)/P(E | H) (known as the likelihood
ratio) is within the open interval (0, 1); if E disconfirms H, then l is strictly greater
than 1; and if E is irrelevant for H, then l is equal to 1. Another common feature
of a Bayesian framework is that probabilities do not take extreme values 0 and 1,
but lie within the open interval (0, 1). An exception is made, however, in the case
of a conditional probability P(A | B) where A is a logical consequence of B; here
P(A | B) = 1.6

To neatly represent the probabilistic knowledge in a graphical manner, one can
employ Bayesian networks.7 A Bayesian network is a directed acyclic graph (DAG)
with nodes representing random variables8 and arrows representing the relationship
between the variables; arrows point only in one direction (hence directed graph) and
there is no path that starts at a certain node and, following the arrows, ends at the same
one (hence acyclic graph). For instance, the network in Fig. 1 is a Bayesian network:
it has two nodes representing two random variables H and E each taking two values:
H and ¬H and E and ¬E, respectively. The one arrow going from H to E encodes the
probabilistic relationship between the two variables: E is probabilistically dependent
on H (the reason could be that, for instance, E is more likely to obtain if H is the case
then if ¬H is the case). To specify the network, one needs to set the prior probabilities
to all root nodes, i.e. nodes that do not have incoming arrows, and one needs to set the
conditional probabilities of all other nodes, given their respective nodes at the other
end of the incoming arrows. In the network in Fig. 1 we need to set the prior probability
of the root node H , i.e. we need to fix P(H), and the conditional probabilities of the
node E given the node H , i.e. we need to fix P(E | H) and P(E | ¬H).

As an illustration let us consider the following example. Say H is the proposition
‘S has cancer’ and E is the proposition ‘The test is positive’. The Bayesian network
in Fig. 1 would then represent the probabilistic relation between S having/not having
cancer and the test being positive/negative. P(H)would be the physician’s prior degree
of belief—i.e. her degree of belief before seeing the test results—that the patient S
has cancer (it could be, for instance, just a proportion of people in the population

6 For surveys on Bayesianism see Háyek and Hartmann (2010) and Hartmann and Sprenger (2011). For a
critical discussion of Bayesianism see Earman (1992).
7 For an introduction to Bayesian networks see Pearl (1988), Neapolitan (2003), Bovens and Hartmann
(2003, pp. 67ff.), DFH (2011, p. 325).
8 Throughout the article, random variables in the network are binary; that is, some random variable A
(denoted by italicized letters) can take two values A or ¬A (denoted by non-italicized letters).
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E

TP TF

EFEP

Fig. 2 The Bayesian network representing the situation before the reduction

that have cancer). P(E | H) would be the true positive rate (the rate of people with
cancer that the test correctly identified as such) and P(E | ¬H) would be the false
positive rate (the rate of healthy people that the test incorrectly identified as having
cancer). Using Bayes’ Theorem9, one could then calculate P(H | E). If we learn that
the test is positive and if P(H | E) > P(H), then, by Bayesian confirmation theory,
the hypothesis that the patient has cancer is confirmed by the test being positive.

Using the formal machinery of Bayesian networks, DFH model situations before
and after the reduction. For simplicity, the authors assume that both TF and TP con-
tain only one element, namely TF and TP respectively. Also, in addition to evidence
(EF) that confirms TF and evidence (EP) that confirms TP, the authors include in the
Bayesian network evidence (E) that confirms both TF and TP. This is justified by the
existence of real world examples of such evidence (DFH 2011, p. 324). Putting all this
together, the situation before the reduction is depicted in Fig. 2.

The relevant probabilities that specify this network are:

P1(TF) = tF , P1(TP) = tP
P1(EF | TF) = pF , P1(EF | ¬TF) = qF
P1(EP | TP) = pP , P1(EP | ¬TP) = qP
P1(E | TF,TP) = α, P1(E | TF,¬TP) = β

P1(E | ¬TF,TP) = γ, P1(E | ¬TF,¬TP) = δ (9)

After the reduction, the situation is different: two more nodes (T ∗
F and T ∗

P ) are
added to the network. This is represented in Fig. 3.

The relevant probabilities for this network include all from Eq. (9), with the excep-
tion of P1(TP) = tP . As TP is no longer a root node, instead of P1(TP) = tP we now
have:

P2(TP | T∗
P) = p∗

P , P2(TP | ¬T∗
P) = q∗

P (10)

In addition to these probabilities, to complete the network DFH (2011, p. 328) also
specify the following probabilities:

9 Bayes’ Theorem: P(H | E) = P(E|H)P(H)
P(E)

= P(E|H)P(H)
P(E|H)P(H)+P(E|¬H)P(¬H)

.
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E

TP TF

EFEP

TP TF
∗ ∗

Fig. 3 The Bayesian network representing the situation after the reduction

P2(T
∗
F | TF) = p∗

F , P2(T
∗
F | ¬TF) = q∗

F (11)

P2(T
∗
P | T∗

F) = 1, P2(T
∗
P | ¬T∗

F) = 0 (12)

The conditional probabilities in Eq. (12) assume extreme values since they represent
the bridge law: T∗

P is a logical consequence of T∗
F, supposing the bridge law in the

background.
Given the Bayesian network in Fig. 3 and the probability assignments related to

that network, one can prove that after the reduction the following two theorems hold
(DFH 2011, p. 329):

Theorem 1 EF confirms TP iff (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

Theorem 2 EP confirms TF iff (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

The two theorems entail that EF confirms TP and EP confirms TF if EF confirms TF
(in which case the likelihood ratio qF/pF is within the interval (0, 1) and, therefore,
pF > qF ), EP confirms TP (pP > qP ), TF confirms T∗

F (p∗
F > q∗

F ), and T∗
P confirms

TP (p∗
P > q∗

P ). That EF confirms TF and EP confirms TP has been assumed from the
beginning. That TF confirms T∗

F and T∗
P confirms TP seems to be plausible according

to DFH (2011, p. 329) as the confirmation flow from TF to TP is thereby ensured. So,
given the Bayesian network in Fig. 3, the related probabilities, and the assumptions
about confirmatory relations among TF, TP, T∗

F, T
∗
P, EF, and EP, one can show that

post-reduction EF confirms TP and EP confirms TF.

3 Critical discussion

In this section I point to some difficulties faced by the Bayesian analysis presented in
the previous section.
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DFH (2011, p. 327) correctly point out that the following conditional independen-
cies hold in the network representing the situation before the reduction (Fig. 2):10

EF ⊥⊥ TP | TF , EP ⊥⊥ TF | TP (13)

Now, DFH (2011, p. 328) also claim that the conditional independencies in Eq. (13)
do not hold in the Bayesian network representing the situation after the reduction
(Fig. 3). However, the conditional independencies in Eq. (13) do hold after the reduc-
tion. Looking at the Bayesian network in Fig. 3 we observe that there are two possible
paths between EF and TP : EF −TF −T ∗

F −T ∗
P −TP and EF −TF − E −TP . As both

paths are blocked at TF by {TF }, then EF and TP are d-separated11 by {TF }; hence,
EF ⊥⊥ TP | TF holds. By similar reasoning we get that EP ⊥⊥ TF | TP also holds.

Further, the authors (2011, p. 327) also claim that the following equalities are a
direct consequence of the conditional independencies in Eq. (13):

P1(TP | EF) = P1(TP), P1(TF | EP) = P1(TF) (14)

However, the equations in (14) do not follow directly from the independencies in
Eq. (13). A counter-example is actually the Bayesian network that represents the
situation after the reduction (Fig. 3). Here, as shown in the previous paragraph, the
independencies fromEq. (13) also hold, but the equations from (14) (which can also be
translated into independencies, namely unconditional independencies TP ⊥⊥ EF and
TF ⊥⊥ EP) do not, since now neither TP and EF nor TF and EP are unconditionally
independent. In spite of that, the equations in (14) do hold before the reduction: they
follow from the independencies in Eq. (13) coupled with TF ⊥⊥ TP that also holds
in the Bayesian network in Fig. 2; alternatively, the equations in (14) can be derived
more directly using d-separation (see “Appendix” for more details).

The difficulties that I have pointed at so far do not undercut the main project laid
out by DFH, as one can still show that after the reduction EF confirms TP and EP
confirms TF. However, the authors also claim that random variables T ∗

F and T ∗
P are

“qua the bridge law, intersubstitutable with each other” and that the arrow “could have
also been drawn from T ∗

P to T ∗
F ,” in which case “we had to require P(T∗

F | T∗
P) = 1

and P(T∗
F | ¬T∗

P) = 0” (DFH 2011, pp. 329–330). Let us, then, modify the Bayesian
network in Fig. 3 by now drawing an arrow from T ∗

P to T ∗
F instead of an arrow that

goes from T ∗
F to T ∗

P (Fig. 4).
Analyzing the network in Fig. 4, we first note that T ∗

P is now a root node and as such
it has a prior probability that one needs to specify. However, it seems at best odd that
we now have to assign a prior probability P(T∗

P), since T
∗
P it is tightly related to T∗

F
and the bridge law, of which it is a logical consequence, and to TP via strong analogy.

10 ‘A ⊥⊥ B | C’ encodes the information that A and B are conditionally independent givenC. By definition,
A and B are conditionally independent given C, i.e. A ⊥⊥ B | C , if and only if P(A | B, C) = P(A | C).
11 d-separation is a property of Bayesian networks by which one can track down all the independences
(conditional and unconditional ones) in the Bayesian network: A ⊥⊥ B | C if and only if A and B are
d-separated by {C}. Two nodes A and B are d-separated by {C} if all the paths in the network between A
and B are blocked by {C}. For more details on d-separation see Neapolitan (2003, pp. 70ff.).
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E

TP TF

EFEP

TP TF
∗ ∗

Fig. 4 The Bayesian network representing the situation after the reduction with an arrow from T ∗
P to T ∗

F

Second, it is incorrect that we only need to specify P(T∗
F | T∗

P) and P(T∗
F | ¬T∗

P) in
the case of an arrow flip between T ∗

F and T ∗
P : T

∗
F is now probabilistically dependent

on both T ∗
P and TF , so we would need to specify P(T∗

F | TF,T∗
P), P(T∗

F | TF,¬T∗
P),

P(T∗
F | ¬TF,T∗

P), and P(T∗
F | ¬TF,¬T∗

P). However, it is not clear what values these
probabilities should assume. Should any have as a value 1 or 0? How do we model the
bride law in this case? Third and most importantly, paths EF − TF − T ∗

F − T ∗
P − TP

and EF − TF − E − TP are now both blocked by ∅ at T ∗
F and E respectively, since

there are converging arrows both at T ∗
F and E . Hence, EF and TP are d-separated by

∅ and EF ⊥⊥ TP holds. Similarly, we get that EP ⊥⊥ TF holds. This implies that
P(TP | EF) = P(TP) and P(TF | EP) = P(TF). So, after the reduction we have
the same pair of equations from (14) that describe the situation before the reduction
and say that EF does not confirm (or disconfirm) TP and that EP does not confirm
(or disconfirm) TF. But this runs against the GNS account which aims at establishing
these confirmatory relations after the reduction.

One could say to this that, surely, if one flips the arrow, undesirable results emerge.
But the GNS talks of T∗

P being a logical consequence of T∗
F (supposing the bridge

law) and not the other way around. This, then, gives a reason to fix the direction of
the arrow. Another reason to fix the arrow direction is that on the GNS, to deduce T∗

P
from TF plus auxiliary assumptions (and thus establish the consistency of T∗

P and TF)
all we need is that whenever TF applies, then T∗

P applies as well (the other direction,
i.e. whenever T∗

P applies, then TF applies as well, is not necessary for deduction). So,
DFH could then simply add a note to their Bayesian analysis saying that, given the
two aforementioned reasons, the network in Fig. 3 (i.e. the network from their actual
analysis), but not the network in Fig. 4 (i.e. the network that they suggest would also
do the job), is the way to model the situation after the reduction. Granting this point,
the analysis suffers from at least three further problems.

Problem 1. From the discussion in Sect. 2.2 of the reduction of the Boyle–Charles
Law to the kinetic theory of gases we learned that in this (simple) case of reduction
T∗
P and TP are one and the same and encode Eq. (8), namely p V = n k T . From the

equations inEq. (12), i.e. ones thatmodel the bridge law,wehave that P2(TP | T∗
F) = 1,

where, in this particular case, T∗
F represents Eq. (5), namely p V = 2n

3 〈Ekin〉. Since,
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P2(TP | T∗
F) = 1, then p V = 2n

3 〈Ekin〉 � p V = n k T ; but this is clearly false. A
better way of writing the entailment would be: p V = 2n

3 〈Ekin〉 �B p V = n k T ,
where B is Eq. (7), namely T = 2

3k 〈Ekin〉. In other words, supposing B, T∗
F entails

TP. But this seems to suggest that the probability distribution P2 needs to be modified
so as to incorporate B in the background, i.e. B needs to be a part of the probability
function P2, in order for the entailment to hold. So, instead of P2(TP | T∗

F) = 1 we
should write PB(TP | T∗

F) = 1 to denote that B is part of the probability function. This
means that besides PB(TP | T∗

F) = 1 and PB(TP | ¬T∗
F) = 0, we also have to specify

PB(TF), PB(EF | TF), PB(EP | TP), PB(E | TF,TP), etc. Intuitively, the unconditional
probability of TF and the conditional probabilities EF given TF, EP given TP, and E
given TF andTP should be the same before and after the reduction: the fact that we have
reduced TP to TF should not affect the unconditional probability of the reducing theory
or the conditional probabilities of the three kinds of evidence. DFH also seem to share
this intuition since on their account P1(TF) = P2(TF), P1(EF | TF) = P2(EF | TF),
P1(EP | TP) = P2(EP | TP), and P1(E | TF,TP) = P2(E | TF,TP) hold. However,
if, as I argued, after the reduction we should have the probability function PB instead
of P2, then P1(EP | TP) = PB(EP | TP) and P1(E | TF,TP) = PB(E | TF,TP) are
no longer guaranteed to hold. For, as on the GNS we derived TP from T∗

F and B, then
after the reduction TP is dependent on B. This implies that, contrary to our intuitions,
PB(EP | TP) and PB(E | TF,TP) may change after the reduction.

Problem 2. The reduction relation should be asymmetric: though theBoyle–Charles
Law reduces to the kinetic theory of gases, the kinetic theory of gases does not reduce to
the Boyle–Charles Law.12 FromEq. (12) it follows that P2(T∗

P | T∗
F) = P2(T∗

F | T∗
P) =

1 and P2(T∗
P | ¬T∗

F) = P2(T∗
F | ¬T∗

P) = 0 (see “Appendix”). Hence, not only does
T∗
F entail T∗

P, but also T∗
P entails T∗

F (supposing the bridge law). So, (i) the proposed
Bayesian analysis requires symmetry in reduction: in our example, not only dowe have
a reduction of the Boyle–Charles Law, but Eq. (5) also reduces to the Boyle–Charles
Law (i.e. Eq. (8)). This seems to run against the intuition that the reduction should go
only in one direction. Further, (ii) the mutual entailment of T∗

P and T∗
F would prevent

partial reductions—cases of reduction where not all the laws of a theory are reduced,
but only some laws of a theory, namely those that are deduced, are reduced—which
the GNS allows for: in the general case, the mutual entailment implies that all laws
of the T ∗

P
can be deduced from T ∗

F
, given the bridge laws. The Bayesian analysis that

DFH put forward accounts, thus, only for the the cases of complete reduction; yet, not
only does the GNS allow for the partial reductions, but some authors have argued that
it is partial reductions that we can best hope for in sciences like biology (Schaffner
2006, p. 384). This means that the proposed Bayesian analysis is not the best fit for
the GNS and that it may disregard certain sciences when it comes to the subject of
reduction.

Problem 3. From Eq. (12) it also follows that P2(T∗
F) = P2(T∗

P) (see “Appendix”).
As on theGNST∗

P is a deductive consequence of T
∗
F and the bridge laws, it seems rather

unlikely, though possible, that P2(T∗
F) = P2(T∗

P). To illustrate the point, let us once

12 A number of authors support the claim that the reduction relation should be asymmetric: Kuipers (1982),
Sarkar (2015, p. 47), Riel (2013), Riel and Gulick (2016, p. 18).
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again return to our example of reduction. Since T∗
P and TP are the same, the equality

then translates as P2(T∗
F) = P2(TP). In other words, after the reduction the probability

of p V = 2n
3 〈Ekin〉 has to be equal to the probability of p V = n k T . It seems

somewhat implausible that the values of the two probabilities always be the same,
since, for one, the two equations hold under different assumptions: p V = 2n

3 〈Ekin〉
is a deductive consequence of the kinetic theory of gases coupled with the auxiliary
assumptions and p V = n k T is a deductive consequence of p V = 2n

3 〈Ekin〉 and the
bridge laws. This then suggests that the relation between P2(T∗

F) and P2(T∗
P) should

best be left open: P2(T∗
F) could be greater than, less than, or equal to P2(T∗

P).
These three problems should not be perceived as knockdown arguments against

DFH’sBayesian analysis: after all, we are in themodel-building businesswhere knock-
down arguments arguably do not have as much bite. The problems’ main purpose is
rather to invite and motivate an alternative model of the situation after the reduction.
My main goal is thus to present another way of modeling the situation after the reduc-
tion that helps us address the three problems, that better fits the GNS, and that allows
us to rigorously show some new results regarding the confirmatory relations that we
could only presume to hold with the original analysis, or so I argue.

4 A revised Bayesian analysis

In this section I try to account for the difficulties presented in the previous section by
introducing modifications to DFH’s Bayesian analysis. I start by discussing a natural
revision to the original analysis and, after recognizing that it does not account for all
the problems of the original analysis, I present an alternative Bayesian analysis.

4.1 An (unsuccessful) easy remedy

Carefully examining the difficulties, one notes that most of them are due to the prob-
ability assignments in Eq. (12). So, as an amendment one could consider changing
these assignments. P3(T∗

P | T∗
F) has to be equal to 1 as T∗

P is a logical consequence
of T∗

F (supposing the bridge law in the background). But what about P3(T∗
P | ¬T∗

F)?
Saying that T∗

F entails T∗
P probabilistically demands only that P3(T∗

P | T∗
F) = 1. It

does not put constrains on the value of P3(T∗
P | ¬T∗

F). However, letting P3(T∗
P | ¬T∗

F)

take the value of 1 would run against the motivation of the GNS, since on this account
T∗
P is a logical consequence of T∗

F and the bridge law, and allowing P3(T∗
P | ¬T∗

F)

to assume the value of 1 would mean that T∗
P is also a logical consequence of ¬T∗

F
and the bridge law. On the other hand, allowing P3(T∗

P | ¬T∗
F) to take the value 0

would bring us back to the problems from the previous section. So, one can specify
P3(T∗

P | ¬T∗
F) = a, where a ∈ (0, 1).

With P3(T∗
P | ¬T∗

F) = a instead of P2(T∗
P | ¬T∗

F) = 0 and everything else as in the
original analysis, one can prove the following theorems:

Theorem 3 EF confirms TP iff (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

Theorem 4 EP confirms TF iff (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.
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Notice that these theorems are of exactly the same form as Theorems 1 and 2 from
the original analysis. Moreover, one can show that 0 < P3(T∗

F | T∗
P) < 1, i.e. T∗

P does
not entail T∗

F. This successfully answers Problem 2 of the original analysis. However,
Problem 1 is still present since P3(T∗

P | T∗
F) = 1 holds and, therefore, one can run

the same argument as in the previous section. In addition, one can also show that
P3(T∗

P) > P3(T∗
F), which is an unfortunate result in light of Problem 3, as the relation

between P3(T∗
P) and P3(T∗

F) is again held fixed (see the “Appendix” for more details
on this subsection).

4.2 An alternative Bayesian analysis

The previous attempt to account for the problems, however, seems to be on the right
track. So, we need to look for additional modifications. Naturally, we can further
investigate bridge laws. In the original analysis, the bridge law is supposed in the
background without explicitly being included in the network. On the other hand,
DFH (2011, pp. 328–329) also mention that (a) different scientists can have different
credences about a particular bridge law. This claim seems to be vindicated by the
following two observations. First, in the derivation of the Boyle–Charles Law from
Sect. 2.2 following Feynman et al. (1964) I presented an argument for the claim that
temperature can be expressed in terms of mean kinetic energy. Some scientists may
be more and some may be less convinced by this argument and so their credences may
vary with respect to the bridge law in Eq. (7). Second, bridge laws can be empirically
tested. For instance, Ager et al. (1974) cite Joule’s experiments which can be used to
vindicate the relation between temperature and mean kinetic energy. Schaffner (2012)
cites Hertz’s and Wiener’s experiments that helped establish the bridge law V = E
used in the derivation of many laws of the physical optical theory of light from the
theory of electromagnetic radiation. Since one scientist’s confidence in the empirical
support of the bridge law may be different from another scientist’s confidence, the
credences scientists have about a particular bridge lawmay differ from one scientist to
another and may change through time. Furthermore, DFH (2011, p. 329) conjecture
that (b) the flow of confirmation in the network is dependent on the probability value
one assigns to the bridge law: with lower probability value the degree of confirmation
of TF by EP or TP by EF is lower. Together, (a) and (b) then give reason to explicitly
model, i.e. to endogenously define, the bridge law (B) in the network (cf. Bovens and
Hartmann 2003, pp. 56ff.). What is more, given (a) it seems plausible that scientists
can give prior probabilities to a particular bridge law; this in turn allows us to model B
as a root node in the network. The question, now, is how to connect B with other nodes.
Well, since T∗

P is a logical consequence of T
∗
F and B, it is natural to draw arrows from

T ∗
F and from B to T ∗

P . Putting it all together, the new Bayesian network representing
the state of affairs after the reduction is depicted in Fig. 5.

Since there is now an additional node in the network, besides probabilities specified
for the Bayesian network in Fig. 3, we also need to specify P4(B). So,

P4(B) = b (15)
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E

TP TF

EFEP

TP TF

B

∗ ∗

Fig. 5 The Bayesian network representing the situation after the reduction with the bridge law defined
endogenously

Further, instead of the probabilities in Eq. (12), we now have to assign values to
P4(T∗

P | T∗
F,B), P4(T∗

P | ¬T∗
F,B), P4(T∗

P | T∗
F,¬B), and P4(T∗

P | ¬T∗
F,¬B). As

T∗
P is a logical consequence of T∗

F and B, then P4(T∗
P | T∗

F,B) = 1. But what about
P4(T∗

P | ¬T∗
F,B), P4(T∗

P | T∗
F,¬B), and P4(T∗

P | ¬T∗
F,¬B)? Drawing on the rationale

from Sect. 4.1, we do not assign them value 1 as we do not want to say that T∗
P is

also entailed by ¬T∗
F or ¬B. We do not assign them value 0 either, since Problem 2 of

the original analysis reemerges (see “Appendix”). So, we assign them value a, where
a ∈ (0, 1).13 Therefore, instead of Eq. (12) we now have:

P4(T
∗
P | T∗

F,B) = 1

P4(T
∗
P | ¬T∗

F,B) = P4(T
∗
P | T∗

F,¬B) = P4(T
∗
P | ¬T∗

F,¬B) = a
(16)

Given the new probability assignments, one is able to show that 0 < P4(T∗
F |

T∗
P,B) < 1, i.e. T∗

F is not entailed by T
∗
P and B, which successfully addresses Problem

2 of the original analysis where T∗
P entails T∗

F (supposing the bridge law). But we
had that result in Sect. 4.1 as well. What about the relation between P4(T∗

F) and
P4(T∗

P), that is, Problem 3? One finds that on the new probability assignments it is
left open, i.e. P4(T∗

P) can be greater than, less than, or equal to P4(T∗
F), depending

on the particular values one assigns to the relevant probabilities (see “Appendix”).
So, Problem 3 is successfully addressed as well. Further, Problem 1 does not emerge
since we have that P4(T∗

P | T∗
F,B) = 1 and T∗

F,B � T∗
P is true without us having to

suppose something additionally in order for the entailment to hold. Hence, the values
of the conditional probabilities EP given TP and E given TP and TF remain the same
before and after the reduction. Therefore, all three problems that one can ascribe to
DFH’s Bayesian analysis do not emerge in the revised Bayesian analysis. What is
more, as I have made use of the real-world example of reduction (i.e. the reduction
of the Boyle–Charles Law to the kinetic theory of gases from Sect. 2.2) to motivate

13 Although a, in principle, can take any value in the open interval (0, 1), it seems more plausible that it
assumes a rather low value since we do not expect to often find that T∗

P holds and that ¬T∗
F or ¬B hold.
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and inform the three problems, this alternative Bayesian analysis is arguably a better
fit for the real-world examples of reduction than DFH’s analysis.

Furthermore, given the Bayesian network in Fig. 5 and probability assignments
associated with it, one can prove the following theorems:

Theorem 5 EF confirms TP iff (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

Theorem 6 EP confirms TF iff (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

As in Sect. 4.1, these theorems are in exactly the same form as Theorem 1 and
Theorem 2, the main results from the original analysis, which say that EF confirms TP
and EP confirms TF. Recently, Sarkar (2015, p. 47) pointed out that though this result
is a good start, one may also be interested in whether there is any added confirmation:
after the reduction, does EF add anything to EP’s confirmation of TP and does EP add
anything to EF’s confirmation of TF? In relation to this question one can prove the
following theorems:

Theorem 7 EF adds to EP’s confirmation of TP iff (pF−qF ) (p∗
F−q∗

F ) (p∗
P−q∗

P )>0.

Theorem 8 EP adds to EF’s confirmation of TF iff (pP−qP ) (p∗
F−q∗

F ) (p∗
P−q∗

P )>0.

The two theorems entail that, after the reduction, EF enhances the confirmation of TP
and EP enhances the confirmation of TF under the same conditions under which EF
confirms TP and EP confirms TF.14 Thus, not only does EF confirm TP and EP confirm
TF, but also EF provides additional confirmational boost to TP (that is, EF provides the
confirmational boost to TP that is in addition to that of EP) and, similarly, EP provides
additional confirmational boost to TF (that is, EP provides the confirmational boost to
TF that is in addition to that of EF).

The analysis so far implies that whether EF confirms TP or EP confirms TF and
whether EF enhances the confirmation of TP or EP enhances the confirmation of TF
does not depend on the value that one assigns to P4(B). However, if we are interested
in the degree of confirmation15 of TP by EF or in the degree of confirmation of TF by
EP, then one can prove the following two theorems:

Theorem 9 Givena, pF , qF , p∗
F , q

∗
F , p

∗
P , q

∗
P , and tF are constant and pF > qF , p∗

F >

q∗
F , and p∗

P > q∗
P , if b increases (decreases), then d(TP, EF) increases (decreases).

Theorem 10 Given a, pP , qP , p∗
F , q

∗
F , p∗

P , q
∗
P , and tF are constant and pP >

qP , p∗
F > q∗

F , and p∗
P > q∗

P , if b increases (decreases), then d(TF, EP) increases
(decreases).

The two theorems say that, other values remaining the same, by increasing (decreasing)
the value of P4(B), the degree of confirmation of TP and the degree of confirmation

14 Interestingly, but perhaps unsurprisingly, one can show that in DFH’s original analysis the two theorems
hold in exactly the same form (see Theorem 7’ and Theorem 8’ in “Appendix”).
15 Here I use the difference measure d as the measure of degree of confirmation of a hypothesis (H) by
evidence (E): d(H,E) := P(H | E) − P(H) (cf. Fitelson 1999, p. 363; Hartmann and Sprenger, 2011,
p. 613).
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Fig. 6 Dependence of P4(T
∗
P) − P4(T

∗
F) on p∗

F and q∗
F , with a = 0.1, b = 0.7, tF = 0.8, and p∗

F > q∗
F .

As p∗
F > q∗

F , a point (p
∗
F , q∗

F ) can only be inside the area below the blue diagonal (dotted green bullet and
sandal triangle). When a point (p∗

F , q∗
F ) lies on the red line, then P4(T

∗
P) − P4(T

∗
F) = 0, i.e. P4(T

∗
P) =

P4(T
∗
F). The area left of the red line (dotted sandal triangle) corresponds to P4(T

∗
P) > P4(T

∗
F). The area

right of the red line (dotted green bullet) corresponds to P4(T
∗
P) < P4(T

∗
F). (Color figure online)

of TF increases (decreases). Or in other words, the degree of confirmation of TP and
the degree of confirmation of TF are directly proportional to the value of P4(B),
given that other values are constant. This is an additional improvement to both the
original analysis and the easy remedy from Sect. 4.1 where one could only speculate
on the relation between the confidence we have in the bridge law and the degree of
confirmation of TP and TF (see DFH 2011, p. 329). Thus, the new alternative Bayesian
analysis is richer in content than both the easy remedy and DFH’s analysis.

Next, although the present Bayesian analysis allows P4(T∗
P) to be greater than, less

than, or equal to P4(T∗
F), given the following plausible value assignments:

a = 0.1, b = 0.7, tF = 0.8, and p∗
F > q∗

F ,

as a further result one finds that P4(T∗
P) < P4(T∗

F) is more likely than P4(T∗
P) ≥

P4(T∗
F). Specifically, P4(T

∗
F) is always greater than P4(T∗

P) if the difference between
p∗
F and q∗

F is sufficiently high (around 0.3) or if both p∗
F and q∗

F assume values greater
than approx. 0.35, as shown in Fig. 6.16

This result is very much in agreement with the GNS. Since T∗
F is a deductive

consequence of TF and plausible auxiliary assumptions which are not foreign to TF,
one would expect P4(T∗

F) to be close to P4(TF); that is, one would expect P4(T∗
F) to

assume a relatively high value (otherwise, if P4(TF) would not be sufficiently high,
we would not be in the business of reducing TP to TF). Further, as T∗

P is a deductive
consequence of T∗

F and plausible bridge laws (B), one would expect P4(T∗
P) to be

16 The situation does not differ much given somewhat different value assignments for a, b, and tF .
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relatively close to P4(T∗
F) but not higher than P4(T∗

F) since (1) P4(T
∗
F) takes a high

value and (2) T∗
P is not a direct consequence of only T

∗
F but of T

∗
F and B. This, however,

is not to say that wewould expect in all cases to find out that P4(T∗
P) is less than P4(T∗

F),
but rather that, given different parameters (e.g. different value assignments for P4(TF),
P4(T∗

F | TF), and so on), what we expect to find is that in the majority of cases P4(T∗
P)

turns out to be less than P4(T∗
F).

In addition to the theorems so far mentioned, one can also prove the following
theorem that is in exactly the same form as the Theorem 3 from DFH’s analysis (DFH
2011, p. 331):

Theorem 11 Δ0 = 0 iff (p∗
F = q∗

F) or (p
∗
P = q∗

P). And Δ0 > 0 if (p∗
F > q∗

F) and if
(p∗

P > q∗
P).

In this theorem, whereΔ0 := P4(TF,TP)− P1(TF,TP), the conjunction of TF and TP
is compared before and after the reduction and it is said that if either TF and T∗

F or T∗
P

and TP are independent, then TF and TP remain independent after the reduction; and
if TF confirms T∗

F and if T∗
P confirms TP, then the conjunction of TF and TP is more

likely after the reduction.
Now, DFH (2011) prove other important theorems that describe the relationship

of the posterior probabilities of the conjunction of TF and TP and the relationship of
the prior and posterior probabilities of the conjunction of TF and TP, which are not
proven in this paper. However, it seems plausible to conjecture that these theorems can
be derived given theBayesian network in Fig. 5 and probability assignments associated
to it as well. For instance, Theorems 4 and 6 of DFH’s analysis say, loosely put, that if
either TF and T∗

F or T∗
P and TP are independent, then there is no flow of confirmation

between TF and TP and the situation after the reduction is the same as the one before
the reduction (DFH 2011, pp. 331–332). Since the difference between the network in
Fig. 5 and the network in Fig. 3 is in the introduction of B in the network in Fig. 5 and,
as mentioned above, B by itself does not stop the flow of confirmation between TF
and TP, then one would expect the other theorems to also hold in this revised analysis.

5 Conclusion

In this paper, I have argued that a Bayesian analysis of the confirmatory relation
between TP and EF and between TF and EP presented by DFH (2011) is not without
difficulties. I have shown that the arrow flip between T ∗

P and T ∗
F would render the

situation after the reduction exactly like the one before the reduction. Moreover, I
have argued that the probability function that DFH use to model the situation after
the reduction should be modified so that it incorporates the bridge law. However, this
leads to the undesirable consequence that the conditional probabilities EP given TP
and E given EF and EP may not remain the same after the reduction (Problem 1).
Furthermore, it follows from DFH’s analysis that T∗

P and T∗
F entail each other. This

mutual entailment (i) requires symmetry in reduction (contrary to one’s expectation
that reduction should be asymmetric) and (ii) it prevents partial reductions (which
the GNS explicitly allows for and which may be the only kind of reduction that we
find in sciences like biology) (Problem 2). From DFH’s analysis it also follows that
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P2(T∗
P) = P2(T∗

F) holds. This is, however, unlikely to always be the case and the
relation between P2(T∗

P) and P2(T∗
F) should then best be left open (Problem 3).

As a remedy, one could specify P3(T∗
P | ¬T∗

F) = a, where a ∈ (0, 1). Although
with this revised version, dubbed an easy remedy, one can prove Theorems 3 and 4
that are in exactly the same form as the Theorems 1 and 2 form the original analysis
and one can account for Problem 2, alas, Problems 1 and 3 remain unanswered.

I then introduced an alternative Bayesian analysis where further modification is
made: a node modeling the bridge laws is added to the Bayesian network. I have
argued that given this new Bayesian network and related probability assignments,
one is able to successfully address the drawbacks of the original analysis that I have
pointed out (i.e. Problems 1, 2, and 3), thus making the new Bayesian analysis more
realistic than DFH’s analysis since the three problems were motivated and informed
by the real-world example of reduction. Also, one can prove Theorems 5, 6 and 11
that share the form with the first three theorems of the original analysis. Further-
more, in contrast to both the original analysis and the easy remedy, one can now
explicitly show (Theorems 9 and 10) the relation between the flow of confirmation
and the value one assigns to the probability of the bridge law, making this analysis
richer in content. Also, I have shown that though the new Bayesian analysis allows
P2(T∗

P) to be greater than, less than, or equal to P2(T∗
F), it is not completely silent

about the relation between P2(T∗
P) and P2(T∗

F): one finds that, given plausible value
assignments, P4(T∗

P) < P4(T∗
F) is more likely than P4(T∗

P) ≥ P4(T∗
F), which, as I

have argued, is in agreement with the GNS. In addition, I have shown not only that
EF confirms TP and EP confirms TF after the reduction, but also that EF enhances
the confirmation of TP (Theorem 7) and EP enhances the confirmation of TF (Theo-
rem 8). Lastly, I have conjectured that one should expect to prove the other theorems
from the original analysis that describe the important confirmatory relations after the
reduction.
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in Lisbon, at the Third Lisbon International Conference on Philosophy of Science and in Dubrovnik, at the
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Appendix

To show: EF ⊥⊥ TP | TF and TP ⊥⊥ TF entail P1(TP | EF) = P1(TP)
17

EF ⊥⊥ TP | TF (1)

TP ⊥⊥ EF | TF (by the s-g axiom Symmetry) (2)

P1(TP | EF,TF) = P1(TP | TF) (by the def. of cond. independence) (3)

TP ⊥⊥ TF (4)

P1(TP | TF) = P1(TP) (by the def. of independence) (5)

17 The expression ‘s-g axiom’ stands for semi-graphoid axiom. For more details on semi-graphoid axioms
see Pearl (1988, pp. 84ff).
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P1(TP | EF,TF) = P1(TP) (from (3) and (5)) (6)

TP ⊥⊥ EF , TF (by the def. of cond. independence) (7)

TP ⊥⊥ EF (by the s-g axiom Decomposition) (8)

P1(TP | EF) = P1(TP) (by the def. of independence) (9)

	

Similarly, we get that EP ⊥⊥ TF | TP and TP ⊥⊥ TF entail P1(TF | EP) = P1(TF).
To show: P1(TP | EF) = P1(TP)—by d-separation
There is only one possible path between EF and TP , namely EF − TF − E − TP ,

which is blocked at E by ∅. Therefore, TP ⊥⊥ EF . By the definition of independence
this translates into P1(TP | EF) = P1(TP). 	


Similarly, we get that P1(TF | EP) = P1(TF) holds by d-separation before the
reduction.

To show: P2(T∗
F | T∗

P) = 1

P2(T
∗
P | ¬T∗

F) = 0

P2(T
∗
P | ¬T∗

F) = P2(T∗
P,¬T∗

F)

P2(¬T∗
F)

= 0

P2(T
∗
P,¬T∗

F) = 0

P2(¬T∗
F | T∗

P) = P2(T∗
P,¬T∗

F)

P2(T∗
P)

= 0

P2(T
∗
F | T∗

P) = 1

	

To show: P2(T∗

F | ¬T∗
P) = 0

P2(T
∗
P | T∗

F) = 1

P2(¬T∗
P | T∗

F) = P2(¬T∗
P,T

∗
F)

P2(T∗
F)

= 0

P2(¬T∗
P,T

∗
F) = 0

P2(T
∗
F | ¬T∗

P) = P2(¬T∗
P,T

∗
F)

P2(¬T∗
P)

= 0

	

To show: P2(T∗

F) = P2(T∗
P)

P2(T
∗
P | T∗

F) = P2(T∗
P,T

∗
F)

P2(T∗
F)

= 1

P2(T
∗
P,T

∗
F) = P2(T

∗
F)
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P2(T
∗
F | T∗

P) = P2(T∗
P,T

∗
F)

P2(T∗
P)

= P2(T∗
F)

P2(T∗
P)

= 1

P2(T
∗
F) = P2(T

∗
P)

	

I adopt the following convention: z := 1 − z.

Theorem 3 EF confirms TP iff (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

Proof

P3(TP|EF) = P3(TP,EF)

P3(EF)

P3(TP,EF) =
∑

T ∗
P ,T ∗

F ,TF

P3(TP | T ∗
P )P3(T

∗
P | T ∗

F )P3(T
∗
F | TF )P3(TF )

· P3(EF | TF )

= pF tF (p∗
P p∗

F + a p∗
P p∗

F + a q∗
P p∗

F )

+ qF tF (p∗
P q∗

F + a p∗
P q∗

F + a q∗
P q∗

F )

P3(EF) =
∑

TF

P3(EF | TF )P3(TF )

= pF tF + qF tF

P3(TP) =
∑

T ∗
P ,T ∗

F ,TF

P3(TP | T ∗
P )P3(T

∗
P | T ∗

F )P3(T
∗
F | TF )P3(TF )

= tF (p∗
P p∗

F + a p∗
P p∗

F + a q∗
P p∗

F )

+ tF (p∗
P q∗

F + a p∗
P q∗

F + a q∗
P q∗

F )

P3(TP | EF) − P3(TP) = a tF tF (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

pF tF + qF tF

	

Theorem 4 EP confirms TF iff (pP − qP ) (p∗

F − q∗
F ) (p∗

P − q∗
P ) > 0.

Proof

P3(TF | EP) = P3(TF,EP)

P3(EP)

P3(TF,EP) = P3(TF)
∑

T ∗
P ,T ∗

F ,TP

P3(EP | TP )P3(TP | T ∗
P )P3(T

∗
P | T ∗

F )

· P3(T ∗
F | TF)

= tF
[
(p∗

F + a p∗
F ) (pP p∗

P + qP p∗
P ) + a p∗

F (pP q∗
P + qP q∗

P )
]

P3(EP) =
∑

T ∗
P ,T ∗

F ,TP ,TF

P3(EP | TP )P3(TP | T ∗
P )P3(T

∗
P | T ∗

F )P3(T
∗
F | TF )
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· P3(TF )

=
(
tF (p∗

F + a p∗
F ) + tF (q∗

F + a q∗
F )

)
(pP p∗

P + qP p∗
P )

+ a (p∗
F tF + q∗

F tF ) (pP q∗
P + qP q∗

P )

P3(TF) = tF

P3(TF | EP) − P3(TF) = a tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P3(EP)

	

To show: 0 < P3(T∗

F | T∗
P) < 1

P3(T
∗
P | T∗

F) = P3(T∗
P,T

∗
F)

P3(T∗
F)

= 1

P3(T
∗
P,T

∗
F) = P3(T

∗
F)

P3(T
∗
F | T∗

P) = P3(T∗
P,T

∗
F)

P3(T∗
P)

= P3(T∗
F)

P3(T∗
P)

P3(T
∗
P) =

∑

T ∗
F

P3(T
∗
P | T ∗

F )P3(T
∗
F )

= P3(T
∗
F) + aP3(¬T∗

F) = P3(T
∗
F) a + a

P3(T
∗
F | T∗

P) = P3(T∗
F)

P3(T∗
F) a + a

Suppose P3(T∗
F | T∗

P) = 0, then

P3(T∗
F)

P3(T∗
F) a + a

= 0

P3(T
∗
F) = 0

But P3(T∗
F) cannot be equal to 0, since by assumption all probabilities are within the

open interval (0, 1) (except for the conditional ones that encode logical consequence).
Suppose P3(T∗

F | T∗
P) = 1, then

P3(T∗
F)

P3(T∗
F) a + a

= 1

P3(T
∗
F) = P3(T

∗
F) a + a

P3(T
∗
F) − P3(T

∗
F) a = a

P3(T
∗
F) a = a

P3(T
∗
F) = 1

But P3(T∗
F) cannot be equal to 1, for the reason mentioned above.
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Hence,

0 < P3(T
∗
F | T∗

P) < 1

	

To show: P3(T∗

P) > P3(T∗
F)

P3(T
∗
P) =

∑

T ∗
F

P3(T
∗
P | T ∗

F )P3(T
∗
F )

= P3(T
∗
F) + a P3(¬T∗

F)

P3(T
∗
P) − P3(T

∗
F) = P3(T

∗
F) + a P3(¬T∗

F) − P3(T
∗
F)

= a P3(¬T∗
F) > 0

	

Of P5(T∗

P | ¬T∗
F,B), P5(T∗

P | T∗
F,¬B), and P5(T∗

P | ¬T∗
F,¬B), as the most plau-

sible candidate for assigning the value 0 is P5(T∗
P | ¬T∗

F,B), since, one could say,
given true bridge laws and false T ∗

F (i.e. ¬T∗
F), theory T ∗

P should not come out as
true. As for P5(T∗

P | T∗
F,¬B) and P5(T∗

P | ¬T∗
F,¬B), regard them as randomizers and

assign them a ∈ (0, 1) (see Bovens and Hartmann 2003, pp. 57ff.). However, with
these probability assignments, a drawback of the original analysis recurs: T∗

P and B
entail T∗

F. In order to show that this entailment holds, observe that in the network in
Fig. 5 T ∗

F ⊥⊥ B holds (the only two paths between T ∗
F and B, i.e. T ∗

F − T ∗
P − B and

T ∗
F − TF − E − TP − T ∗

P − B, are blocked by ∅ at T ∗
P and E respectively; so, T ∗

F and
B are d-separated by ∅).

To show: P5(T∗
F | T∗

P,B) = 1

P5(T
∗
P | T∗

F,B) = P5(T∗
P,T

∗
F,B)

P5(T∗
F,B)

= 1 (10)

P5(T
∗
P,T

∗
F,B) = P5(T

∗
F,B) (11)

T ∗
F ⊥⊥ B (12)

P5(T
∗
F,B) = P5(T

∗
F)P5(B) (13)

P5(T
∗
P,T

∗
F,B) = P5(T

∗
F)P5(B) (from (11) and (13)) (14)

P5(T
∗
F | T∗

P,B) = P5(T∗
P,T

∗
F,B)

P5(T∗
P,B)

= P5(T∗
F)P5(B)

P5(T∗
P,B)

(15)

P5(T
∗
P,B) = P5(B)

∑

T ∗
F ,TF

P5(T
∗
P | T ∗

F ,B)P5(T
∗
F | TF )P5(TF ) (16)

= b (p∗
F tF + q∗

F tF ) (17)

P5(T
∗
F) =

∑

TF

P5(T
∗
F | TF )P5(TF ) (18)

= p∗
F tF + q∗

F tF (19)
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P5(T
∗
P,B) = b P5(T

∗
F) (from (17) and (19)) (20)

P5(T
∗
F | T∗

P,B) = b P5(T∗
F)

b P5(T∗
F)

= 1 (from (15) and (20)) (21)

	

To show: 0 < P4(T∗

F | T∗
P,B) < 1

P4(T
∗
P | T∗

F,B) = P4(T∗
P,T

∗
F,B)

P4(T∗
F,B)

= 1 (22)

P4(T
∗
P,T

∗
F,B) = P4(T

∗
F,B) (23)

T ∗
F ⊥⊥ B (24)

P4(T
∗
F,B) = P4(T

∗
F)P4(B) (25)

P4(T
∗
P,T

∗
F,B) = P4(T

∗
F)P4(B) (from (23) and (25)) (26)

P4(T
∗
F | T∗

P,B) = P4(T∗
P,T

∗
F,B)

P4(T∗
P,B)

= P4(T∗
F)P4(B)

P4(T∗
P,B)

(27)

P4(T
∗
P,B) = P4(B)

∑

T ∗
F ,TF

P4(T
∗
P | T ∗

F ,B)P4(T
∗
F | TF )P4(TF ) (28)

= b
(
(p∗

F tF + q∗
F tF ) a + a

)
(29)

P4(T
∗
F) =

∑

TF

P4(T
∗
F | TF )P4(TF ) (30)

= p∗
F tF + q∗

F tF (31)

P4(T
∗
P,B) = b

(
P4(T

∗
F) a + a

)
(from (29) and (31)) (32)

P4(T
∗
F | T∗

P,B) = bP4(T∗
F)

b
(
P4(T∗

F) a + a
) (from (27) and (32)) (33)

= P4(T∗
F)

P4(T∗
F) a + a

(34)

0 <
P4(T∗

F)

P4(T∗
F) a + a

< 1 (from the proof of 0 < P3(T∗
F | T∗

P) < 1) (35)

	

To show: P4(T∗

P) > P4(T∗
F) or P4(T

∗
P) < P4(T∗

F) or P4(T
∗
P) = P4(T∗

F)

P4(T
∗
P) =

∑

T ∗
F ,B,TF

P4(T
∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF )P4(TF )

= tF
(
b p∗

F + a b p∗
F + a p∗

F

)
+ tF

(
b q∗

F + a b q∗
F + a q∗

F

)

P4(T
∗
F) =

∑

TF

P4(T
∗
F | TF )P4(TF )

= p∗
F tF + q∗

F tF
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P4(T
∗
P) − P4(T

∗
F) = a − (a b + a) (p∗

F tF + q∗
F tF )

= a − (a b + a) P4(T
∗
F)

So, when P4(T∗
F) = a

a b+a
, then P4(T∗

P) = P4(T∗
F) (note that for 0 < a < 1 and

0 < b < 1, 0 < a
a b+a

< 1). When P4(T∗
F) < a

a b+a
, then P4(T∗

P) > P4(T∗
F). When

P4(T∗
F) > a

a b+a
, then P4(T∗

P) < P4(T∗
F). 	


Theorem 5 EF confirms TP iff (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P ) > 0.

Proof

P4(TP | EF) = P4(TP,EF)

P4(EF)

P4(TP,EF) =
∑

T ∗
P ,T ∗

F ,B,TF

P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF )P4(TF )

· P4(EF | TF )

= pF tF
(
p∗
P (b p∗

F + a b + a b p∗
F ) + q∗

P (a b + a b p∗
F )

)

+ qF tF
(
p∗
P (b q∗

F + a b + a b q∗
F ) + q∗

P (a b + a b q∗
F )

)

P4(EF) =
∑

TF

P4(EF | TF )P4(TF )

= pF tF + qF tF

P4(TP) =
∑

T ∗
P ,T ∗

F ,B,TF

P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF )P(TF )

= p∗
P

(
b p∗

F tF + b q∗
F tF + a b + a b p∗

F tF + a b q∗
F tF

)

+ q∗
P

(
a b + a b p∗

F tF + a b q∗
F tF

)

P4(TP | EF) − P4(TP) = a b tF tF (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

pF tF + qF tF

	

Theorem 6 EP confirms TF iff (pP − qP ) (p∗

F − q∗
F ) (p∗

P − q∗
P ) > 0.

Proof

P4(TF | EP) = P4(TF,EP)

P4(EP)

P4(TF,EP) = P4(TF)
∑

T ∗
P ,T ∗

F ,B,TP

P4(EP | TP )P3(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)

· P4(T ∗
F | TF)
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= tF
[
(b p∗

F + a b + a b p∗
F ) (pP p∗

P + qP p∗
P )

+ a (b + b p∗
F ) (pP q∗

P + qP q∗
P )

]

P4(EP) =
∑

T ∗
P ,T ∗

F ,B,TP ,TF

P4(EP | TP )P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)

· P4(T ∗
F | TF )P4(TF )

= (b p∗
F tF + b q∗

F tF + a b + a b p∗
F tF + a b q∗

F tF ) (pP p∗
P + qP p∗

P )

+ a (b + b p∗
F tF + b q∗

F tF ) (pP q∗
P + qP q∗

P )

P4(TF) = tF

P4(TF | EP) − P4(TF) = a b tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P4(EP)

	

Theorem 7 EF adds to EP’s confirmation of TP iff (pF−qF ) (p∗

F−q∗
F ) (p∗

P−q∗
P ) > 0.

Proof

P4(TP | EP,EF) = P4(TP,EP,EF)

P4(EP,EF)

P4(TP,EP,EF) = P4(EP | TP)
∑

T ∗
P ,T ∗

F ,B,TF

P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)

· P4(T ∗
F | TF )P4(EF | TF )P4(TF )

= pP
[
a b (p∗

F pF tF + q∗
F qF tF ) (p∗

P − q∗
P )

+ (pF tF + qF tF ) (a p∗
P + a q∗

P )
]

P4(EP,EF) =
∑

T ∗
P ,T ∗

F ,B,TP ,TF

P4(EF | TF )P4(TF )P4(EP | TP )P4(TP | T ∗
P )

· P4(T ∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF )

= pP
[
a b (p∗

F pF tF + q∗
F qF tF ) (p∗

P − q∗
P )

+ (pF tF + qF tF ) (a p∗
P + a q∗

P )
]

+ qP
[
a b (p∗

F pF tF + q∗
F qF tF ) (p∗

P − q∗
P )

+ (pF tF + qF tF ) (a p∗
P + a q∗

P )
]

P4(TP | EP) = P4(TP,EP)

P4(EP)

P4(TP,EP) = P4(EP | TP)
∑

T ∗
P ,T ∗

F ,B,TF

P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)

· P4(T ∗
F | TF )P4(TF )

= pP
[
a b (p∗

F tF + q∗
F tF ) (p∗

P − q∗
P ) + a p∗

P + a q∗
P

]
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P4(EP) = pP
[
a b (p∗

F tF + q∗
F tF ) (p∗

P − q∗
P ) + a p∗

P + a q∗
P

]

+ qP
[
a b (p∗

F tF + q∗
F tF ) (p∗

P − q∗
P ) + a p∗

P + a q∗
P

]

(alternative form of P4(EP) from the proof of Theorem 5)

P4(TP | EP,EF) − P4(TP | EP) = a b pP qP tF tF (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P4(EP,EF) P4(EP)

	


Theorem 8 EP adds to EF’s confirmation of TF iff (pP−qP ) (p∗
F−q∗

F ) (p∗
P−q∗

P ) > 0.

Proof

P4(TF | EF,EP) = P4(TF,EF,EF)

P4(EF,EP)

P4(TF,EF,EP) = P4(TF)P4(EF | TF)
∑

T ∗
P ,T ∗

F ,B,TP

P4(EP | TP )P4(TP | T ∗
P )

· P4(T ∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF)

= pF tF
[
p∗
F

(
b (pP p∗

P + qP p∗
P )

+ b (a pP p∗
P + a qP p∗

P + a pP q∗
P + a qP q∗

P )
)

+ p∗
F (a pP p∗

P + a qP p∗
P + a pP q∗

P + a qP q∗
P )

]

P4(EF,EP) = pF tF
[
p∗
F

(
b (pP p∗

P + qP p∗
P )

+ b (a pP p∗
P + a qP p∗

P + a pP q∗
P + a qP q∗

P )
)

+ p∗
F (a pP p∗

P + a qP p∗
P + a pP q∗

P + a qP q∗
P )

]

+ qF tF
[
q∗
F

(
b (pP p∗

P + qP p∗
P )

+ b (a pP p∗
P + a qP p∗

P + a pP q∗
P + a qP q∗

P )
)

+ q∗
F (a pP p∗

P + a qP p∗
P + a pP q∗

P + a qP q∗
P )

]

(alternative form of P4(EF,EP) from the proof of Theorem 7)

P4(TF | EF) = P4(TF,EF)

P4(EF)

= P4(EF | TF)P4(TF)∑
TF

P4(EF | TF )P4(TF )

= pF tF
pF tF + qF tF
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P4(TF | EF,EP) − P4(TF | EF) = a b pF qF tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P4(EF,EP) P4(EF)

	

Theorem 7’ EF adds to EP’s confirmation of TP iff (pF −qF ) (p∗

F −q∗
F ) (p∗

P −q∗
P ) >

0.

Proof

P2(TP | EP,EF) = P2(TP,EP,EF)

P2(EP,EF)

P2(TP,EP,EF) = P2(EP | TP)
∑

T ∗
P ,T ∗

F ,TF

P2(TP | T ∗
P )P2(T

∗
P | T ∗

F )

· P2(T ∗
F | TF )P2(EF | TF )P2(TF )

= pP
[
pF tF (p∗

P p∗
F + q∗

P p∗
F ) + qF tF (p∗

P q∗
F + q∗

P q∗
F )

]

P2(EP,EF) =
∑

T ∗
P ,T ∗

F ,TP ,TF

P2(EF | TF )P2(TF )P2(EP | TP )P2(TP | T ∗
P )

· P2(T ∗
P | T ∗

F )P2(T
∗
F | TF )

= pP
[
pF tF (p∗

P p∗
F + q∗

P p∗
F ) + qF tF (p∗

P q∗
F + q∗

P q∗
F )

]

+ qP
[
pF tF (p∗

P p∗
F + q∗

P p∗
F ) + qF tF (p∗

P q∗
F + q∗

P q∗
F )

]

P2(TP | EP) = P2(TP,EP)

P2(EP)

P2(TP,EP) = P2(EP | TP)
∑

T ∗
P ,T ∗

F ,TF

P2(TP | T ∗
P )P2(T

∗
P | T ∗

F )

· P2(T ∗
F | TF )P2(TF )

= pP
[
tF (p∗

P p∗
F + q∗

P p∗
F ) + tF (p∗

P q∗
F + q∗

P q∗
F )

]

P2(EP) =
∑

T ∗
P ,T ∗

F ,TP ,TF

P2(EP | TP )P2(TP | T ∗
P )P2(T

∗
P | T ∗

F )

· P2(T ∗
F | TF )P2(TF )

= pP
[
tF (p∗

P p∗
F + q∗

P p∗
F ) + tF (p∗

P q∗
F + q∗

P q∗
F )

]

· qP
[
tF (p∗

P p∗
F + q∗

P p∗
F ) + tF (p∗

P q∗
F + q∗

P q∗
F )

]

P2(TP | EP,EF) − P2(TP | EP) = pP qP tF tF (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P2(EP,EF) P2(EP)

	

Theorem 8’ EP adds to EF’s confirmation of TF iff (pP−qP ) (p∗

F−q∗
F ) (p∗

P−q∗
P )>0.
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Proof

P2(TF | EF,EP) = P2(TF,EF,EP)

P2(EF,EP)

P2(TF,EF,EP) = P2(TF)P2(EF | TF)
∑

T ∗
P ,T ∗

F ,TP

P2(TP | T ∗
P )P2(T

∗
P | T ∗

F )

· P2(T ∗
F | TF)P2(EP | TP )

= pF tF
[
p∗
F (pP p∗

P + qP p∗
P ) + p∗

F (pP q∗
P + qP q∗

P )
]

P2(EF,EP) = pF tF
[
p∗
F (pP p∗

P + qP p∗
P ) + p∗

F (pP q∗
P + qP q∗

P )
]

· qF tF
[
q∗
F (pP p∗

P + qP p∗
P ) + q∗

F (pP q∗
P + qP q∗

P )
]

(alternative form of P2(EF,EP) from the proof of Theorem 7’)

P2(TF | EF) = P2(TF,EF)

P2(EF)

= P2(EF | TF)P2(TF)∑
TF P2(EF | TF )P2(TF )

= pF tF
pF tF + qF tF

P2(TF | EF,EP) − P2(TF | EF) = pF qF tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P2(EF,EP) P2(EF)

	

Theorem 9 Given a, pF , qF , p∗

F , q
∗
F , p

∗
P , q

∗
P , and tF are constant and pF > qF , p∗

F >

q∗
F , and p∗

P > q∗
P , if b increases (decreases), then d(TP, EF) increases (decreases).

Proof From the proof of the Theorem 5 above, we have that:

P4(TP | EF) − P4(TP) = a b tF tF (pF − qF ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

pF tF + qF tF

Observe that, given tF , a, pF , qF , p∗
F , q

∗
F , p

∗
P , and q∗

P are constant and pF > qF ,
p∗
F > q∗

F , and p∗
P > q∗

P , if b increases, then a b tF tF (pF −qF ) (p∗
F −q∗

F ) (p∗
P −q∗

P )

increases. As the denominator, i.e. pF tF + qF tF , does not dependent on b, then if b

increases,
a b tF tF (pF−qF ) (p∗

F−q∗
F ) (p∗

P−q∗
P )

pF tF+qF tF
increases, i.e. d(TP,EF) increases.

	

Theorem 10Givena, pP ,qP , p∗

F ,q
∗
F , p

∗
P ,q

∗
P , and tF are constant and pP > qP , p∗

F >

q∗
F , and p∗

P > q∗
P , if b increases (decreases), then d(TF, EP) increases (decreases).

Proof From the proof of the Theorem 6 above, we have that:

P4(TF | EP) − P4(TF) = a b tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

P4(EP)
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Fig. 7 Dependence of P4(EP) (left figure) and C and d(TF,EP) (right figure) on b

Notice that, in contrast to the previous proof, the denominator, i.e. P4(EP), is dependent
on b; so, changing the value of b would also change the value of P4(EP). Alternative
way of writing P4(EP) so that it better serves the purpose of this proof is:

P4(EP) = a b (p∗
F tF + q∗

F tF ) (pP − qP ) (p∗
P − q∗

P ) + a (pP p∗
P + qP p∗

P )

+ a (pP q∗
P + qP q∗

P )

Further, let us introduce the following abbreviations:

C := a b tF tF (pP − qP ) (p∗
F − q∗

F ) (p∗
P − q∗

P )

D := a b (p∗
F tF + q∗

F tF ) (pP − qP ) (p∗
P − q∗

P )

Observe that both C and P4(EP) increase as b increases (other values remaining con-
stant). To see which of the two, C or P4(EP), increases faster with the increase of b,
we calculate C − D.

C − D = −a b (pP − qP ) (p∗
P − q∗

P ) (t2F p∗
F + tF tF q∗

F + tF q∗
F )

So, given pP > qP and p∗
P > q∗

P , C < D (as a consequence C < P4(EP); so
C

P4(EP)
< 1). Hence, with the increase of b, P4(EP) increases faster than C, that is, the

slope of P4(EP) is greater than the slope of C. Nevertheless, even with a very large
slope of P4(EP) and a very small slope of C, C

P4(EP)
still increases, as shown in Fig. 7.

So, if b increases, d(TF,EP) increases. 	


Theorem 11 Δ0 = 0 iff (p∗
F = q∗

F ) or (p
∗
P = q∗

P ). And Δ0 > 0 if (p∗
F > q∗

F ) and if
(p∗

P > q∗
P ).
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Proof

P1(TF,TP) = tF tP

= tF
[
p∗
P

(
b p∗

F tF + b q∗
F tF + a b + a b p∗

F tF + a b q∗
F tF

)

+ q∗
P

(
a b + a b p∗

F tF + a b q∗
F tF

)]
(P4(TP) instead of P1(TP)

P4(TF,TP) = P4(TF)
∑

T ∗
P ,T ∗

F ,B

P4(TP | T ∗
P )P4(T

∗
P | T ∗

F , B)P4(B)P4(T
∗
F | TF)

= tF
[
p∗
P (b p∗

F + a b + a b p∗
F ) + q∗

P (a b + a b p∗
F )

]

Δ0 := P4(TF,TP) − P1(TF,TP)

Δ0 = a b tF tF (p∗
F − q∗

F ) (p∗
P − q∗

P )
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