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Abstract

Causal judgements in explaining-away situations, where multiple independent causes com-

pete to account for a common effect, are ubiquitous in both everyday and specialised con-

texts. Despite their ubiquity, cognitive psychologists still struggle to understand how peo-

ple reason in these contexts. Empirical studies have repeatedly found that people tend to

‘insufficiently’ explain away: that is, when one cause explains the presence of an effect,

people do not sufficiently reduce the probability of other competing causes. However, the

diverse accounts that researchers have proposed to explain this insufficiency suggest we

are yet to find a compelling account of these results. In the current research we explored

the novel possibility that insufficiency in explaining away is driven by: (i) some people in-

terpreting probabilities as propensities, i.e. as tendencies of a physical system to produce

an outcome and (ii) some people splitting the probability space among the causes in diag-

nostic reasoning, i.e. by following a strategy we call ‘the diagnostic split’. We tested these

two hypotheses by manipulating (a) the characteristics of cover stories to reflect different

degrees to which the propensity interpretation of probability was pronounced, and (b) the

prior probabilities of the causes which entailed different normative amounts of explaining

away. Our results were in line with the extant literature as we found insufficient explaining

away. However, we also found empirical support for our two hypotheses, suggesting that

they are a driving force behind the reported insufficiency.

Keywords: Explaining away, Probability interpretation, Propensity, Causal Bayesian

networks, Causal inference
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1. Introduction

Every day we make numerous judgements and inferences that rely on our beliefs about

how events or items of information are causally related to each other. For example, on the

way to work people may think of possible causes that could lead them to be late to an

important meeting such as heavy traffic, a broken elevator, or adverse weather conditions.

The vast majority of these causal judgments occur under uncertainty.

Since erroneous causal probabilistic inferences, particularly in specialized contexts,

can lead to deleterious consequences, understanding how these inferences are made is

critical. Consider for instance a real-world scenario in which a social worker is trying to

ascertain whether action should be taken to remove a child displaying bruises from the

custody of his parents under the suspicion that he is being physically abused. From her

experience the social worker knows that bruises could also be the product of alternative

independent causes, one of which is a rare blood disorder ‘haemophilia’. Since she does

not know for certain whether the child was physically abused and/or whether he suffers

from haemophilia, but she knows of the presence of bruises, she increases the probabil-

ity of each potential cause. If after a medical examination the social worker found out

that the child definitely suffers from haemophilia, then the probability of the child being

physically abused would decrease, since haemophilia is sufficient to explain the bruises.

If on the other hand the medical examination revealed that the child definitely does not

suffer from haemophilia, then the probability of the child being abused would further in-

crease as a result.2 This scenario illustrates a pattern of reasoning known as ‘explaining

2The importance of understanding explaining away relationships in these contexts is clearly reflected in

the American Academy of Pediatrics’ (AAP) clinical report where conducting laboratory evaluations with

the understanding that presence of a bleeding disorder does not rule out physical abuse is highly empha-

sized (Anderst, Carpenter, & Abshire, 2013). Furthermore, the AAP also warns physicians that inappropriate
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away’.3 In more general terms, explaining away describes a situation in which multiple

independent causes (e.g. physical abuse and haemophilia) compete to explain a common

effect (e.g. bruises). After observing the occurrence of the effect, the probability of the two

causes increases. Subsequently, after learning of the occurrence of one cause (the child

suffers from haemophilia) the probability of the alternative cause(s) decreases (physical

abuse). If, conversely, we learned that a cause did not happen (the child does not suffer

from haemophilia), the probability of the other cause(s) further increases (physical abuse).

An increasingly popular approach in the cognitive science to modeling causal rea-

soning in general and explaining away in particular employs Causal Bayesian Networks

(CBNs). We will first describe CBNs and a CBN model for explaining away and subse-

quently outline previous empirical work on explaining away in the psychological literature

as well as the potential shortcomings of this work. Finally, we will discuss motivations and

details of the experimental work presented in this paper.

1.1. Explaining away: normative account

Causal Bayesian networks (Pearl, 2009; Neapolitan, 2003) can be used to represent

probabilistic knowledge in a graphical manner. They are directed acyclic graphs (DAGs)

with nodes representing random variables4 and arrows representing the causal relation-

ships between these variables. Arrows in CBNs point only in one direction (directional

graph) and following the arrows there is no path that starts and finishes at the same node

(acyclic graph).

diagnostics of child abuse can lead to the potential prosecution of an innocent person.
3A related concept to explaining away is discounting. For the distinction between the two concepts see

Khemlani and Oppenheimer (2011), Rehder and Waldmann (2017), Rottman and Hastie (2014).
4In this paper, all random variables in CBNs are binary: a random variable X (denoted by italicized

letters) can take exactly two values X or ∼X (denoted by non-italicized letters), where X indicates that X is

present and ∼X indicates that X is absent.
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The computational machinery of CBNs grounded in the probability theory allows one

to perform exact quantitative computations of the probability of any random variable(s)

in the network being present/absent given the presence/absence of any other variables.

However, in order to perform these calculations one needs to fully parameterize the CBNs

by specifying (i) the prior probabilities (or priors) of all root nodes (i.e. nodes that do not

have incoming arrows) and (ii) the conditional probabilities of each remaining node given

all the values of their direct causes (i.e. nodes they are directly linked to).

E

C1 C2

Figure 1: A CBN model of explaining away

Consider the graph in Figure 1, typically referred to as a common-effect CBN. It con-

sists of three nodes representing three random variables: two causes, C1 and C2, and one

common effect, E. The graph is directed and acyclic and since C1 and C2 are interpreted

as causes and E as an effect, the arrows have a causal interpretation making the DAG

a CBN. To fully parametrize this CBN, one needs to specify the prior probabilities of

the two causes, i.e. P(C1) and P(C2), as well as the conditional probabilities of the ef-

fect E given the presence and/or absence of each cause, i.e. P(E | C1,C2), P(E | C1,∼C2),

P(E | ∼C1,C2), and P(E | ∼C1,∼C2).5 Once one specifies these parameters, one can com-

pute for instance P(C1 | E), or P(E | C2), or P(C1,E | ∼C2), etc.

5Since all variables are binary, one has it that P(∼C1) = 1−P(C1), P(∼C2) = 1−P(C2), P(∼E | C1,C2) =

1 − P(E | C1,C2), etc.
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In addition to quantitative computations, CBNs allow one to make qualitative infer-

ences on the (un)conditional independencies and dependencies between variables in the

network. For instance, the structure of the network in Figure 1 dictates that regardless

of the network parametrization, C1 and C2 are unconditionally independent. This means

that not knowing the state of the common effect variable E, learning that C1 is present

or absent does not affect the probability of C2 being present or absent and vice versa (or

P(Ci | C j) = P(Ci) where i ∈ {1, 2} for any value of Ci and C j). However, depending on

the network parameterization, the two causes may become conditionally dependent on E,

i.e. upon learning that E is either present or absent, the presence or absence of C1 may

affect the probability of C2 being present or absent and vice versa.

Situations involving explaining away can be modeled utilising common-effect CBNs

such as the one in Figure 1 (see Pearl, 1988, 2009). For example, we could model the afore-

mentioned example by representing physical abuse as C1, haemophilia as C2, and finally

the bruises on the body as E. The two causes are (unconditionally) independent when we

do not know whether the child has bruises on his body or not, which follows our intuitions

that physical abuse and haemophilia cannot probabilistically influence each other, before

learning anything about the bruises. Once we learn that the child has bruises on his body,

we update the probabilities of the two causes via diagnostic reasoning (i.e. reasoning from

effects to causes, see Meder & Mayrhofer, 2017). The fact that the child has bruises on his

body, now renders the two causes conditionally dependent, since, as per explaining away,

additionally learning that the child is suffering from haemophilia would change (decrease)

the probability that the child has been physically abused. Common-effect CBNs, however,

do not always lead to the pattern of explaining away where after observing the effect, ad-

ditionally learning one cause decreases the probability of the other. This is only the case

when CBNs are parameterized such that the following inequality holds (see Wellman &

Henrion, 1993):

6



P(E | Ci,Cj) P(E | ∼Ci,∼Cj) < P(E | Ci,∼Cj) P(E | ∼Ci,Cj) (1)

for i, j ∈ {1, 2}; or in words, the product of the probability of evidence knowing both

causes are true and the probability of evidence knowing neither cause is true is strictly less

than the product of evidence knowing only one cause is true and the other false and the

probability of evidence knowing the other cause is true and the first one is false. From

Inequality (1) it follows (see Morris & Larrick, 1995; Griffiths, 2001):

P(Ci | E,Cj) < P(Ci | E) < P(Ci | E,∼Cj) (2)

The inequalities in (2) accord with the general intuition of explaining away mentioned

above and serve as a definition of explaining away in the empirical research outlined in the

present paper (see also Rehder & Waldmann, 2017; Rottman & Hastie, 2016).

It is often assumed (and empirical studies have been conducted with this assump-

tion in mind) that explaining away situations hold when both causes are generative: the

probability of evidence given a cause is greater than the prior probability of evidence

(i.e. P(E | Ci) > P(E)) (Cheng, 1997). This is true, meaning that Inequality (1) (and hence

the inequalities in (2)) holds if the causes are generative. However, it is also the case that

Inequality (1) holds if both or one of the causes is inhibitory, i.e. when the probability of

evidence given that cause is less than the prior probability of evidence or P(E | Ci) < P(E).6

For example, sneezing can be prevented by taking antihistamine drugs and/or by turning

on an air filtration system. Learning that a person is sneezing will decrease the probability

6Here we are not claiming that if P(E | Ci) > P(E) then the cause is generative and if P(E | Ci) < P(E)

then the cause is inhibitory, as the two events can be positively or negatively correlated without them being

causally related. Rather, we are taking that if a cause is generative, then P(E | Ci) > P(E) and if a cause is

inhibitory then P(E | Ci) < P(E).
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of them taking antihistamine drugs and will decrease the probability that the air filtration

system is on in the space they occupy (i.e. P(E | Ci) < P(E) for both causes). However,

additionally learning that a person is taking antihistamine drugs will further reduce the

probability of the air filtration system being on, i.e. P(Ci | E,Cj) < P(Ci | E), since the

probability of sneezing is lower when both the person is taking the antihistamine drugs

and the air filtration system is on than when the person is just taking the antihistamine

drugs but the air flirtation system is off. Conversely, if we instead learnt that the person

is not taking the antihistamine drugs then probability of the air flirtation system being on

will go back closer to its prior. In this case, P(Ci | E) < P(Ci | E,∼Cj) since the prob-

ability of sneezing is higher if the person is not taking the antihistamine drugs and the

filtration system is off than if they are not taking the antihistamine drugs but the filtration

system is on. More technical details on when Inequality (1) holds with regards to the

generative/inhibitory nature of causes are presented in Appendix A.

Although the above are interesting considerations, in this paper we exclusively refer

to, and focus on, generative causes.

1.2. Explaining away: empirical account

Explaining away is an ubiquitous pattern of inference, found in a wide range of con-

texts including social attribution, medical diagnosis and legal domains (Kelley, 1973;

Pearl, 1988; Rottman & Hastie, 2016). In specialised contexts, as demonstrated by the

aforementioned legal scenario, erroneous intercausal reasoning inferences may have detri-

mental consequences. Despite its ubiquity and importance in human reasoning, empirical

research on explaining away in the psychological sciences adopting the constrained defini-

tion outlined by the inequalities in (2) is somewhat limited and has insofar yielded mixed

findings (for an overview see Rottman & Hastie, 2014). Overall however, it appears that

human explaining away inference, even in simple three-node common-effect causal struc-
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tures (see Figure 1), is fallible, thus emphasizing the significance of further investigating

this evasive phenomenon.

Most of the studies exploring explaining away have reported that people explain away

insufficiently or not at all (Davis & Rehder, 2017; Fernbach & Rehder, 2013; Morris &

Larrick, 1995; Rehder & Waldmann, 2017; Rottman & Hastie, 2016; Sussman & Oppen-

heimer, 2011) and in some cases even display behaviour directly opposite to that of ex-

plaining away: P(Ci | E,Cj) > P(Ci | E,∼Cj) (Fernbach & Rehder, 2013; Rehder, 2014a)

or P(Ci | E,Cj) > P(Ci | E) (Rottman & Hastie, 2016, Experiment 1a). Importantly, the in-

sufficiency of explaining away remains robust across the different methodologies utilised

by researchers. For example, Rottman and Hastie (2016) taught participants the statistical

parameters of the variables in the common-effect structure through experience-based trials,

complemented by written and graphical information. Disparately, Fernbach and Rehder

(2013, Experiment 3) provided participants with explicit information on the structure in

textual and graphical formats only. Finally, Rehder and Waldmann (2017) compared three

different formatting methods to convey information to the participants: description-only

(written description of the causal model, without communicating parameters), experience-

only (data regarding the parameters presented in a tabular format without the causal struc-

ture), and description-experience (combination of the former two formats). Similarly, peo-

ple’s error-prone explaining away behaviour is seemingly persistent over different proba-

bility elicitation methods. Typically, studies have elicited probabilities from participants

in the form of numerical estimates (Rottman & Hastie, 2016). Other methods that have

been used include a verbal point scale or inference ratings (Fernbach & Rehder, 2013;

Sussman & Oppenheimer, 2011) and qualitative forced choice responses in which partic-

ipants are required to select which one of two situations is more likely to have a certain

variable present, on the basis of the states of the other variables (Rehder, 2014a). Despite

the use of different information presentation formats and belief elicitation methods, all of
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the above-mentioned studies reported insufficient explaining away.

1.3. Limitations of previous studies

Although the empirical studies on explaining away speak to the robustness of peo-

ple’s deviation from the normative model, it is worth mentioning some limitations that we

commonly find in these studies.

1.3.1. Prior probabilities of causes

The majority of the studies neither convey nor elicit prior probabilities to partici-

pants (see Rottman & Hastie, 2014), making it difficult to compare participants’ inferences

to the normative model since it is unclear what prior probabilities participants assumed.

In some cases, authors expected their participants to infer information on the priors of

causes, but never elicited their estimates, therefore leaving unclear whether participants

had accepted them (e.g. Rehder & Waldmann, 2017). Exceptions to this trend are the few

studies that explicitly stated and subsequently elicited priors from participants (Liefgreen,

Tešić, & Lagnado, 2018), or utilised participants’ own prior probability estimates to cal-

culate the normative benchmark probabilities pertaining to explaining away (Morris &

Larrick, 1995).

The importance of adopting transparency when dealing with priors in empirical stud-

ies of explaining away also lies in the fact that priors in most cases directly dictate the

amount of explaining away found in the normative model (see Morris & Larrick, 1995).

Typically, lower priors imply a larger amount of explaining away than higher priors, since

∆1 and ∆2 are usually larger when the priors are lower than when they are higher, where

∆1 = P(Ci | E) − P(Ci | E,Cj) and ∆2 = P(Ci | E,∼Cj) − P(Ci | E). As really high prior

probabilities lead to minimal amounts of explaining away in the normative model, even if

participants adopted the priors given to them and engaged in the correct pattern of infer-

ence, explaining away would most probably remain undetected. This suggests that for the
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normative amount of explaining away in the model to be accurately computed (and thus

for the comparisons to the normative model to be informative), it is crucial to know what

priors are being utilised in experiments, both by participants and by experimenters. Al-

though most studies have not taken these points into consideration, there are a few excep-

tions, which should encourage researchers to use similar approaches. For example, some

authors manipulated the prior probabilities of causes to reflect different amounts of norma-

tive explaining away (e.g. Rottman & Hastie, 2016) and others purposefully utilised low

priors in order to increase the amount of explaining away in their normative model (e.g.

Rehder & Waldmann, 2017).

In the present work we address these issues by (i) providing participants with explicit

priors and subsequently re-eliciting these to ensure they have been accepted and (ii) as-

signing different priors ranging from low to high to the causes in the model to vary the

normative amount of explaining away.

1.3.2. Independence of causes

A second matter that could be contributing to the pervasive insufficiency of explaining

away pertains to the reported systematic violation of the condition of independence in stud-

ies exploring explaining away in common-effect structures, i.e. P(Ci | Cj) , P(Ci | ∼Cj)

(Rehder, 2011, 2014a, 2014b; Rehder & Burnett, 2005; Rehder & Waldmann, 2017,

Description-only condition; Rottman & Hastie, 2016, Experiment 1b). In these cases,

participants seem to be regarding the two causes to be initially dependent, typically report-

ing a positive correlation between them. Now, a positive correlation between the causes

would significantly lower the amount of explaining away in the normative model. Gen-

erally, the higher the degree of positive correlation, the lower the normative amount of

explaining away, with very high degrees of positive correlation potentially leading to a

pattern opposite to explaining away (see Morris & Larrick, 1995). This then suggests
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that an insufficiency in explaining away could be explained by participants understating

causes to be positively correlated in studies where positive correlation between the causes

is found. What is more, in instances in which the causes are positively correlated, it may

even seem intuitive to not reduce or minimally reduce the probability of one causes given

the other, after observing the effect (see Morris & Larrick, 1995). To slightly modify our

example, haemophilia and internal bleeding can both be causes of bruises on a body, but

haemophilia and internal bleeding are also positively correlated: a person suffering from

haemophilia is more likely to have internal bleeding even before knowing anything about

bruises. So, when a doctor learns that a patient has bruises, additionally learning that the

patient has internal bleeding would incur minimal to no reduction in the likelihood that the

patient is suffering from haemophilia. This notion is empirically supported by a study of

Morris and Larrick (1995), in which participants explained away significantly less in the

condition in which they were communicated that the causes were positively correlated than

in conditions in which the causes were said to be independent or negatively correlated.

Empirically detecting explaining away is, then, potentially particularly difficult in stud-

ies where participants report positive correlations between the causes. For instance, in

Rottman and Hastie (2016) Experiment 1b, participants’ average estimates relating to in-

dependence of the causes were P(Ci | Cj) = .45 and P(Ci | ∼Cj) = .35 (see Table 5 in

Rottman & Hastie, 2016), suggesting a posiive correlation between the causes and a vi-

olation of the independence assumption. If one, however, includes these participants’

average estimates as parameters in the normative model instead of those stated in the

study (i.e. P(Ci | Cj) = .25 and P(Ci | ∼Cj) = .25), one gets that P(Ci | E) = .54 and

P(Ci | E,Cj) = .55 (see Appendix B for more details). So, given the participants’ reported

positive correlation between the causes, the difference between P(Ci | E) and P(Ci | E,Cj)

is now negligible and slightly goes in the opposite direction to explaining away. Fur-

thermore, these new normative probability values for P(Ci | E) and P(Ci | E,Cj) closely
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approximate average participants’ estimates: P(Ci | E) = .58 and P(Ci | E,Cj) = .56 (see

Table 7 in Rottman & Hastie, 2016). This is in line with the study by Morris and Larrick

(1995) and highlights the importance of ensuring that participants understand the indepen-

dence relations between the causes in order to increase chances of detecting explaining

away and make more direct comparisons to the normative model which is assumed by

the experimenters and communicated to the participants. In our studies we seek to guard

from potential violations of independence by (i) explicitly emphasizing, in both textual

and graphical formats, that the two causes are independent, (ii) employing cover stories

that intuitively would minimize participants’ inclination to view the two causes as un-

conditionally dependent, and (iii) asking participants qualitative relational questions (see

below) prompting them to compare the probability of Ci given the presence/absence of C j

(when the state of the effect E is unknown) to the prior probability of Ci.

1.3.3. Probability elicitation methods

A third factor that may be contributing to the reported insufficiency of explaining away

in the psychological literature pertains to how belief updates are elicited from participants.

Foremost, explaining away is a relational concept. In our previous example scenario,

a social worker reduces the probability that the child has been physically abused upon

learning that he is suffering from haemophilia relative to the probability that the child

has been physically abused when it was unknown whether the child is suffering from

haemophilia. Similarly, the social worker increases the probability that the child has been

physically abused upon learning that he is not suffering from haemophilia relative to the

probability that the child has been physically abused when it was unknown whether the

child is suffering from haemophilia. This relational property of explaining away is more

formally expressed in the inequalities in (2). It is then important to empirically explore

whether people understand this relational nature of explaining away.
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Most studies on explaining away elicit participants’ belief estimates in isolation with-

out asking participants to compare their estimates or rates to their other estimates or rates.

For instance, participants are often required to provide an estimate of the probability of a

cause given the presence of both the effect and another cause, i.e. P(Ci | E,Cj), but they

are seldom asked also to consider the relation and direction of change of this probability

compared to the probability of the cause given just the effect, i.e. P(Ci | E).

Despite the intuitive importance of asking qualitative relational questions when testing

for explaining away, to the best of our knowledge only two studies have employed such or

similar methods: Rehder (2014a) and Liefgreen et al. (2018). Our current research builds

on these studies and we complement quantitative questions asking for numerical proba-

bility estimates of, for example, P(Ci | E,Cj), with qualitative relational questions asking

them to consider whether P(Ci | E,Cj) is less than, greater than, or equal to P(Ci | E).

Further, we distinguish between direct explaining away which corresponds to what is usu-

ally referred to as an explaining away question, namely a question about P(Ci | E,Cj), of

course in relation to P(Ci | E) (see for example Morris & Larrick, 1995) and explaining

away as a relational concept captured by inequalities in (2) which includes the question

about P(Ci | E,Cj), but also about P(Ci | E) and P(Ci | E,∼Cj) (see for example Rehder &

Waldmann, 2017). This will allow us to present a more comprehensive view regarding

explaining away.

2. Motivations for present work

Due to the potential methodological confounds mentioned above and the mixed find-

ings of the extant empirical work on explaining away, we conducted an initial study to

evaluate people’s explaining away inferences (see Liefgreen et al., 2018) utilising a novel

design. Despite concluding that participants accepted priors of causes and did not violate

the assumption of independence, Liefgreen et al. (2018) still observed insufficient explain-
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ing away. A closer inspection of the data strongly suggested that participants’ behaviour

could be categorised into two clusters: (1) those who, in answering diagnostic reasoning

questions (i.e. P(Ci | E)), split the probability space between the two causes and answered

such that P(C1 | E) + P(C2 | E) = 1 and (2) those who did not update the probabilities

of causes from their priors, given the presence of the effect or even given the presence

of the effect and the other cause: P(Ci) = P(Ci | E) = P(Ci | E,Cj). The explanations

participants in cluster (2) provided led us to hypothesize that these participants may be

interpreting probabilities in a certain way, which has been referred to in the philosophical

literature as ‘propensities’.

The two conjectures regarding the two clusters prompted us to design the current study

in which we not only aimed to address the limitations of previous studies by employing a

novel experimental design (see Methods section), but we also attempted to test (i) whether

people employ a strategy that we call ‘the diagnostic split’ in tackling diagnostic reasoning

questions and (ii) whether a specific interpretation of probability partly drives the observed

deviation of people’s explaining away inferences from the normative ones. We will now

describe the two hypotheses in more detail and outline how we will empirically address

them.

2.1. Diagnostic split strategy

Experimental data from our previous study (Liefgreen et al., 2018) indicated that a

significant number of participants provided answers to the diagnostic reasoning questions

such that P(C1 | E) and P(C2 | E) added up to 1. This was particularly striking in the con-

dition in which the stated prior probabilities were low, P(C1) = .2 and P(C2) = .1. In this

condition, a number of participants either said P(C1 | E) = P(C2 | E) = .5 or provided a

more sophisticated answer to reflect the 2 : 1 ratio of the priors, i.e. P(C1 | E) = .67 and

P(C2 | E) = .33 (the normative answers were P(C1 | E) = .71 and P(C2 | E) = .36). Par-
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ticipants’ verbal reasoning explanations regarding P(Ci | E) questions suggested that they

correctly believed that since the effect was observed one of the causes must have occurred,

but incorrectly believed that as there are two causes, there is a .5 probability that either

cause happened.7 Other explanations suggested participants reasoned in the following

way: Cause 1 is 20% likely to be happen, while Cause 2 is only 10% likely to happen, and

as we know one of them happened, it is twice as likely to be Cause 1, so the probability

that the Cause 1 happened is .67, while this is .33 for Cause 2. This led us to hypothesize

that when engaging in diagnostic reasoning in cases where the two (or more) indepen-

dent causes become exhaustive upon learning evidence, i.e. P(C1 ∨ C2 ∨ . . . ∨ Cn | E) = 1

since P(E | ∼C1,∼C2, . . . ,∼Cn) = 0, but crucially they do not become mutually exclusive,

i.e. P(C1,C2, . . . ,Cn | E) , 0 since P(E | C1,C2, . . . ,Cn) > 0, some people simply split the

probability space between the two causes and assign each cause a .5 probability when the

causes had equal priors. We dubbed this strategy ‘the diagnostic split’.

It is worth noting the relationship between the diagnostic split strategy and the norma-

tive reasoning. Namely, as the priors of causes converge to 0, the normative diagnostic

inferences approach to the the diagnostic split strategy.8 Moreover, when the priors of the

two causes follow a particular ratio, a : b, then, given priors are very close to 0, it norma-

tively follows that P(C1 | E) + P(C2 | E) ≈ 1 and P(C1 | E) ≈
a

a + b
and P(C2 | E) ≈

b
a + b

which follows the diagnostic split predictions (see Figure 2). As such, the diagnostic

split hypothesis has its normative underpinnings and could be understood as an extreme

approximation of the normative diagnostic reasoning.

Other empirical studies seems also to have found trends corresponding to the diagnos-

7The experimental design from our 2018 study was, like the experimental designs from Experiment 1

and 2 below, fully deterministic, i.e. P(E | C1,C2) = P(E | Ci,∼Cj) = 1, and P(E | ∼C1,∼C2) = 0.
8We thank Ben Rottman for pointing this to us.
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constant diagnostic split prediction of 1/2 in the case of equal priors. Right: the difference between

the normative diagnostic reasoning (Pnorm(C1 | E) and Pnorm(C2 | E)) and the constant diagnostic

split predictions of 2/3 and 1/3 for 2 : 1 ratio of the priors. Both figures assume deterministic set-

up, i.e., P(E | C1,C2) = P(E | Ci,∼Cj) = 1, and P(E | ∼C1,∼C2) = 0. We can see that as priors are

getting closer to 0 the diagnostic split hypothesis is better approximating the normative diagnostic

reasoning.
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tic split hypothesis. For instance, Rottman and Hastie (2016) report that the highest point

in distributions of participants’ diagnostic reasoning responses was at .5 (see Figure 6 in

Rottman & Hastie, 2016). This was true for both Experiment 1a where the priors were

P(C1) = P(C2) = .5 and Experiment 1b where P(C1) = P(C2) = .25, which suggests

the use of the diagnostic split strategy. A recent study by Pilditch, Fenton, and Lagnado

(2019) tested people for what they call ‘the zero-sum fallacy’. The fallacy stipulates that

some people treat evidence as a zero-sum game in which alternative independent hypothe-

ses compete for evidential support and evidential support of one hypothesis means dis-

confirmation of the other. More specifically, the fallacy is based on the false assumption

that the two competing independent hypotheses are mutually exclusive and exhaustive and

that evidential support for one hypothesis would entail decrease in the evidential support

for the other one. Pilditch et al. (2019) found that when evidence was equally predicted

by two competing hypotheses, learning that evidence obtains offers no support for either

hypothesis. People displayed this kind of reasoning even after introducing an interven-

tion such as explicitly stating that the hypotheses (causes) are non-exhaustive, and it was

shown that the results were not driven by participants’ believing that the evidence was

non-diagnostic. Although Pilditch et al. (2019) did not provide participants with priors

and all data was qualitative, assuming perhaps even natural priors of P(C1) = P(C2) = .5,

suggests their findings fit predictions of the diagnostic split hypothesis that P(Ci | E) = .5,

since given the priors of .5, E would provide no support for either C1 or C2. In addition, a

diagnostic split would occur given any priors, as according to zero-sum reasoning, the two

causes would be considered mutually exclusive and exhaustive which would imply that

P(Ci | E) = .5 for any P(Ci).

In the present work we directly test the diagnostic split hypothesis. In addition to low

and medium priors conditions where we expect to replicate our previous findings (i.e. we

expect to find P(Ci | E) = .5 ≥ P(Ci), for P(C1) = P(C2) ≤ .5), in Experiment 1 we
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also introduced a high priors condition (P(Ci) > .5). In this condition, according to our

diagnostic split hypothesis, we expect a significant number of participants to report that

the probability of the causes reduces upon learning the effect occurred, compared to their

prior probabilities. In other words, we expect to find that a number of participants will

erroneously say that P(Ci | E) = .5 < P(Ci) for P(C1) = P(C2) > .5 even though the

causes are maximally strong (i.e. their strengths are 1, see Cheng, 1997).

2.2. Probability interpretations

Another large cluster of data from our previous study, consisted of participants who

did not alter the probabilities of causes from the priors after learning the effect occurred

or after learning the presence of the effect and the other cause. For these participants,

P(Ci) = P(Ci | E) = P(Ci | E,Cj) in both medium and low priors conditions. Through

inspection of the data, we ascertained that participants were not merely being inattentive

during the task as their completion time suggested they did not rush through the task.

Furthermore, they provided explanations about their responses where they usually outlined

that since the (prior) probability of one cause happening had been explicitly established,

it should not change even in the presence of the effect or of the alternative cause. These

considerations led us to hypothesize that participants in this cluster may be interpreting

probabilities in a specific way.

In the philosophy of statistics literature, one usually finds that probability interpre-

tations are split into at least two classes: epistemological and objective (Gillies, 2000a,

2000b; Hájek, 2012; Popper, 1959).9 In epistemological interpretations, probability is re-

lated to (the incompleteness of) our knowledge. The most famous interpretation within

this class is the subjective probability interpretation, according to which probabilities are

9Some authors argue that instead of a strict divide between epistemological and objective probability

interpretations, there is a continuum of probability interpretations. See, for instance, Gillies (2000a).
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identified as degrees of belief of a particular person, meaning that different individuals can

hold different degrees of belief (or different belief strengths) about the same event. On

the other hand, objective interpretations view probability as a feature of the material world

that is independent of our knowledge or our beliefs. Probabilities, according to this inter-

pretation, can in principle be tested using statistical tests. The frequency interpretation is a

well-known objective probability interpretation. Here, probabilities are specified as (limit)

frequencies with which an outcome occurs in a sequence of similar events.

A lesser-known probability interpretation is the propensity interpretation (Popper, 1959;

Giere, 1973), according to which probabilities are propensities (or tendencies and dispo-

sitions) of a particular physical system to produce an outcome (Hájek, 2012). To say that

an event X occurs with a probability r, i.e. P(X) = r, is to say that the strength of the

propensity of a particular chance set-up to produce outcome X on trial L is r (see Giere,

1973).10 For example, the statement that the probability of a coin to land Heads equals 1
2

is equivalent to the statement that there is a coin tossing set-up and that on a particular trial

the strength of the propensity for this coin to land Heads is 1
2 . This propensity is objective,

it is part of the physical world, and it does not depend on our beliefs about the coin landing

Heads.

How does this relate to explaining away? Imagine a situation where there are two

coins tossed at the same time, each with a coin bias of 1
5 for Heads. Imagine that in this

set-up there is also a light bulb that will turn on if at least one coin lands Heads. Here,

it is perfectly natural to ask about the propensity for the light bulb to turn on if Coin 1

landed Heads, i.e. P(E | C1), since whether or not the coin lands Heads or Tails causally

affects the propensity of the light bulb (i.e. another physical system) to turn on and so

10For the purposes of this paper we are confining ourselves to what Gillies (2000b) refers to as ‘single-case

propensity theories’ (see for instance Giere, 1973).
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it is perfectly plausible that P(E | C1) , P(E). So far the propensity interpretation and

normative account are in agreement. However, the propensity of Coin 1 to have landed

Heads given that the light bulb turned on is simply the original propensity for Coin 1 to

land Heads: whether or not the light bulb turns on cannot (backward) causally affect the

propensity/the coin bias of Coin 1 to land heads, therefore P(C1 | E) = P(C1) = 1
5 .11 In

the same vein, additionally learning that Coin 2 landed Heads cannot causally influence

how Coin 1 landed and thus cannot not change the propensity of Coin 1 to land Heads,

i.e. P(C1 | E,C2) = P(C1 | E) = P(C1) = 1
5 . Thus according to the propensity interpreta-

tion, observing the effect (or another cause) would not change the propensity of the cause

in question to happen. This is stark contrast with the normative account where these three

probabilities are in general not equal.

However, like the diagnostic split hypothesis, the propensity interpretation has its

normative underpinning in the limit. Figure 3 shows that as the priors converge to 1,

the normative diagnostic reasoning estimates approach predictions of the propensity in-

terpretation, i.e. that P(Ci | E) − P(Ci) = 0. Furthermore, when the explaining away

set-up is deterministic (as in our experiments), then even normatively holds true that

P(Ci | E,Cj) = P(Ci). Thus although the propensity interpretation in general does not

accord with the normative account, it can, in some instances, well approximate the nor-

mative account. For example, from Figure 3 we can see that the propensity interpretation

approximates normative diagnostic reasoning within .1 error when the priors are higher

than .63. From Figure 2 on the left we can see that the diagnostic split hypothesis approx-

11This intuition has been (formally) outlined in Humphreys (1985), who employs it to argue that propen-

sities are inconsistent with The Kolmogorov Axioms of probability and that, by extension, the propensity

interpretation of probability cannot serve as the normative basis. This inconsistency is commonly known as

‘the Humphreys’s paradox’ in the literature.
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Figure 3: The difference between the normative diagnostic reasoning (Pnorm(Ci | E)) and the prior

probability of the causes in the case of equal priors. The figure assumes deterministic set-up, i.e.,

P(E | C1,C2) = P(E | Ci,∼Cj) = 1, and P(E | ∼C1,∼C2) = 0. We can see that as priors are getting

closer to 1 the propensity interpretation is better approximating the normative diagnostic reasoning.

imate the normative diagnostic reasoning within .1 error when the priors are lower than

.33. Thus the propensity interpretation and the diagnostic split hypotheses are complemen-

tary to each other: the propensity interpretation well approximates the normative account

when the priors are high and the diagnostic split hypothesis does the same when the priors

are low. Together, the two are approximating the normative estimates within .1 error for

two thirds of all the possible priors. Therefore, even though both are fully opposed to the

normative account, together they can reasonably well approximate the normative account.

In this paper we thus hypothesise that the propensity interpretation, which predicts that
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P(Ci | E,Cj) = P(Ci | E) = P(Ci)12, could be partly driving the insufficiency observed in

empirical studies of explaining away. The plausibility of this explanation is increased in

light of the psychology literature suggesting that people may be able to distinguish be-

tween different variants of uncertainty, one of which is propensity (see Fox & Ülkümen,

2011; Kahneman & Tversky, 1982), and studies suggesting that people are sensitive to

different probability interpretations (Ülkümen, Fox, & Malle, 2016) and may in fact be

thinking of probabilities as propensities (Keren & Teigen, 2001). Furthermore, the propen-

sity hypothesis would fit the results reported by Rehder (2014a) where a large proportion

(and in most cases the majority) of participants reasoning with a 3-node common effect

CBN said that P(C1 | E) is as equally likely as P(C1 | E,C2). This was particularly salient

in Experiments 1–3 and the deterministic condition of Experiment 4a where no informa-

tion about the strength of the causal relations was provided to participants, which in turn

might have suggested that participants understood the causal relations in these cases to be

deterministic: a cause always produces an effect (see Rehder, 2014a).13

12In general, the propensity interpretation would also predict that P(Ci) = P(Ci | Cj) = P(Ci | ∼Cj) =

P(Ci | ∼E) = P(Ci | Cj,∼E) = P(Ci | ∼Cj,E) = P(Ci | ∼Cj,∼E). However, given that in this paper we have

adopted a deterministic set-up, it is not possible for P(Ci | ∼E), P(Ci | Cj,∼E), and P(Ci | ∼Cj,∼E) to equal

P(Ci) since if we learn that evidence does not obtain that means that both causes are false with probability

1. Furthermore, we did not predict that P(Ci | ∼Cj,E) would be accounted by the propensity hypothesis as,

in the deterministic set-up, it becomes a simple logic inference (see below) as P(Ci | ∼Cj,E) = 1. Lastly,

although the propensity hypothesis predicts that P(Ci) = P(Ci | Cj) = P(Ci | ∼Cj) we did not focus on

these probability estimates when it came to the propensity interpretation (however, see our results sections

regarding the independence of causes) as these results are equality predicated by the normative account.
13One could argue that even the diagnostic split strategy could be seen as a particular interpretation of

probability, namely the classical interpretation according to which the probability of an event is just a fraction

of the total number of possibilities in which the event occurs (see Gillies, 2000a; Hájek, 2012). For example,

the classical probability of a die landing on an even number is 3
6 . The classical interpretation is thought to
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Now, (causal) Bayesian networks (CBNs) usually go hand in hand with the subjec-

tive probability interpretation (also referred to as the Bayesian probability interpretation).

Pearl (2009, see Section 1.1.2)—as well as Pearl (1988)—is explicit in his adherence to

the subjective probability interpretation. Probabilities of nodes in a CBN represent our

degrees of belief in events that are causally related and learning that one event happened

may affect our degree of belief in some other event (another node in a CBN) happening.

On this interpretation, it is perfectly natural to ask both about one’s degree of belief the

light bulb turned on if the Coin 1 landed Heads as well as one’s degree of belief that Coin

1 landed Heads if the light bulb turned on. Moreover, authors empirically testing explain-

ing away, in particular those using CBNs as a benchmark, are explicit about assuming a

subjective probability interpretation making comparisons between normative and observed

inferences (e.g. Morris & Larrick, 1995; Rehder & Waldmann, 2017). However, people

may not always interpret probabilities in a subjective way, which can lead to deviations

from the normative account. This sentiment is also expressed by Tversky and Kahneman:

Decision analysis views subjective probability as a degree of belief, i.e., as a

summary of one’s state of information about an uncertain event. This concept

does not always coincide with the lay interpretation of probability. People

be particularly salient when evidence is symmetrically balanced, which could be expounded as cases where

P(C1 | E) = P(C2 | E) = . . . = P(Cn | E). These cases seem to correspond to cases in diagnostic reasoning

where participants assign equal probability to each of the possible causes after learning evidence that equally

supports each cause. However, as we find that some participants assign unequal probabilities to each cause

to reflect unequal priors (Liefgreen et al., 2018), we continue to talk about the diagnostic split strategy rather

then the classical interpretations for (i) the classical interpretation has difficulties in handling the cases where

the outcomes (possibles) have unequal probabilities, i.e. where outcomes are biased and (ii) the diagnostic

split predicts the same probabilities as the classical interpretation when the probabilities of the causes are

equal, but also applies to cases where the probabilities of the causes are unequal.
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sometimes think of the probability of an event as a measure of the propensity

of some causal process to produce that event, rather than as a summary of

their state of belief. The tendency to regard properties as belonging to the

external world rather than to our own state of information characterizes much

of our perception. We normally regard colors as properties of objects, not of

our visual system, and we treat sounds as external rather than internal events.

In a similar vein, people commonly interpret the assertion “the probability of

heads on the next toss of this coin is 1/2” as a statement about the propensity

of the coin to show heads, rather than as a statement about our ignorance

regarding the outcome of the next toss. (Tversky & Kahneman, 1977, p. ii)

Testing whether participants’ responses on explaining away tasks are partly driven by a

particular probability interpretation different from a subjective probability interpretation

could then shed light on the findings reported in the extant literature of explaining away.

3. Experiment 1

The aim of this experiment was two-fold: to (i) test people’s intuitions in explaining

away contexts and (ii) explore if people employ the diagnostic split strategy and/or if they

are driven by the propensity interpretation when reasoning in these contexts. In order to

do so we used a novel experimental design that not only addressed previously mentioned

methodological confounds of previous studies, but additionally allowed us to manipulate

two main factors: prior probabilities of causes and the properties of cover stories within

which the same common-effect three node structure was embedded.
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3.1. Manipulations

3.1.1. Prior probabilities of causes

By manipulating priors of causes we aimed to: (i) vary the amount of normative ex-

plaining away (the lower the priors the higher the normative amount of explaining away)

and (ii) test the diagnostic split hypothesis. As such, we created three conditions in which

the prior probabilities of the causes were either low—P(C1) = P(C2) = .2—medium—

P(C1) = P(C2) = .5—or high—P(C1) = P(C2) = .7. In all conditions, the presence of at

least one cause entailed the presence of the effect: P(E | C1,C2) = P(E | Ci,∼Cj) = 1; and

absence of both causes entailed absence of the effect: P(E | ∼C1,∼C2) = 0. The determin-

istic relations between the causes and the effect have as a consequence maximal normative

explaining away (for a given prior probability) since P(Ci | E,Cj) is equal to the prior

probability (i.e. to P(Ci)). Additionally, we hoped that these deterministic relations would

facilitate people’s ability to engage in both diagnostic reasoning and explaining away.

The lower the prior probabilities of causes are, the larger the normative amount of ex-

plaining away (see also Rottman & Hastie, 2016). Given the parameters from the previous

paragraph, when the priors are low, the probability change from P(Ci | E) to P(C1 | E,C2)

is .36 and the probability change from P(C1 | E,C2) to P(C1 | E,∼C2) is .8, whereas when

the priors are medium these changes were .17 and .5 respectively, and only .07 and .3 when

the priors are high. Therefore, manipulating priors allowed us to test the prediction that

participants would explain away more when reasoning with low priors than when reason-

ing with both medium and high priors, and that participants reasoning with medium priors

would explain away more than those reasoning with high priors.

Additionally, manipulating prior probabilities of causes allowed us to test the diagnos-

tic split hypothesis. We expected a significant number of participants reasoning with low

priors to update the probabilities of the two causes to .5 in diagnostic reasoning questions,
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i.e. in P(Ci | E); for participants reasoning with medium priors we expected them to stay

at .5 for both causes in P(Ci | E); and we expected participants reasoning with high priors

to lower the probabilities of causes from priors to .5 in P(Ci | E).

3.1.2. Properties of cover stories

In addition to manipulating prior probabilities of causes, we manipulated the properties

of the cover stories. In the present study we employed three different cover stories: one

involving coin-tossing, one involving balls and containers, and one involving a dinner

party. The cover stories were picked such that the propensity interpretation was most

accentuated in the coin-tossing cover story, less so in the ball containers one, and least in

the dinner party one.

The propensity interpretation itself does not specify which cover stories would lead to

more or less acceptance of that interpretation. In devising our cover stories we followed

(i) the philosophy of probability literature and (ii) the general idea outlined Section 2.2

on propensity interpretation that propensities are associated with tendencies of a physical

system that describes a particular chance set-up and that propensities are often tied with

causal (or even causal-mechanistic) relationships. This would then imply that we expect to

find the propensity interpretation most pronounced in cover stories that include a descrip-

tion of chance set-ups as physical systems with clear causal-mechanistic relations. The

cover stories that do not include psychical systems or casual-mechanistic relationships,

such as, for instance, cover stories embedded in certain social contexts would render the

propensity interpretation less pronounced.

The first cover story where we believed the propensity interpretation would be the

highly pronounced included a coin-tossing scenario with the two causes (C1 and C2) being

represented by two coins (binary variables assuming the value of either Heads or Tails) that

are tossed with the same probability pi for Heads by two coin-tossing mechanisms located
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in separate rooms. If at least one coin landed Heads,a light bulb (common effect), stored

in a different unit and connected to the two coin-tossing mechanisms via electric cables,

would switch on. From the propensity interpretation point of view, pi is the propensity

for a coin to land Heads given a coin-tossing set-up and that propensity does not change

whether or not the light bulb (i.e. the effect) is on or off: learning that the light bulb is

on/off does not affect the propensity/the disposition for a coin to land Heads. As the

questionnaire prompted participants to answer diagnostic reasoning and explaining away

questions pertaining to the coins (see Section 3.2 below) that are embedded in two physical

systems with clear causal-mechanistic relationships to the light bulb we argue that the

propensity interpretation will be strongly pronounced in this scenario.

The second cover stories we used included balls and containers where the two causes

were represented by two balls (binary variables assuming the value of either copper or

rubber) randomly selected from two independent containers and placed on two gaps in

an electric circuit. If at least one of the two balls was copper, a light bulb in the cir-

cuit (the common effect) would turn on. This cover story also included physical systems

(mechanisms for random selection of balls from containers) with clear causal-mechanistic

relationships (electric circuit) with the common effect (i.e. the light bulb). However, here

we follow Giere (1973) in arguing that although the propensity is still present in this cover

story, it is at the level of a random sampling mechanism (i.e. the way the balls are selected

from the containers), not at the level of balls that are placed onto the electric circuit. The

balls are either copper or rubber; they do not have a propensity to be copper or rubber (or

if they do it is an extreme propensity of 0 or 1). The random sampling mechanism, on the

other hand, does have a propensity pi to select a copper or a rubber ball from a container.

Since, in our study, we prompted participants to answer diagnostic reasoning and explain-

ing away questions pertaining to the balls and not to the random sampling mechanism, we

argue that the propensity interpretation is less pronounced in this cover story compared to
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the coin-tossing cover story where the propensity was at the level of events in we asked in

our questionnaire, namely coins.

Finally, we created a cover story that incorporated a social context namely a dinner

party where the two causes were represented by two individuals, Michael and Tom, and

the common effect was represented by a third individual, Helen, who would drink wine

only if at least one of the two aforementioned people brought wine to a dinner party (‘He-

len’ was a binary variable assuming the value of either ‘drinking wine’ or ‘not drinking

wine’). In this cover story, the probability pi of whether a person brings wine to the party

was determined purely by the subjective estimates of a host of the party and not by any

particular physical system with clear underlying causal-mechanistic relationships to the

common cause. For this reason, we argue that in this scenario the propensity interpreta-

tion is the least pronounced (if at all).

Given the above rationale, we predicted that the proportion of participants whose rea-

soning aligns with the propensity interpretation, i.e. who would respond P(Ci) = P(Ci | E) =

P(Ci | E,Cj), would be the highest when reasoning with the coin-tossing cover story, small-

est when reasoning with the dinner party cover story, and fall in between these when rea-

soning with the ball containers cover story.

3.2. Methods

3.2.1. Participants and Design

A total of 464 participants (NMALE = 181, MAGE = 34.6 years) were recruited from

Prolific Academic (www.prolific.ac). All participants were native English speakers

who gave informed consent and were paid £1 for partaking in the present study, which

took on average 10.6 minutes to complete. Eleven participants were excluded as they

answered incorrectly to the catch trial, leaving a total of 453 participants in the analyses.

A between-participant design was employed and participants were randomly allocated
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to one of 3 (Cover story: coins, ball containers, dinner party) × 3 (Priors condition: low,

medium or high) = 9 groups (NCOINS LOW = 49, NCOINS MED = 50, NCOINS HIGH = 50,

NBALL CONTAINERS LOW = 51, NBALL CONTAINERS MED = 52, NBALL CONTAINERS HIGH = 52,

NDINNER LOW = 50, NDINNER MED = 50, NDINNER HIGH = 49).

3.2.2. Materials

Each of the groups was asked to complete an inference questionnaire (NQUESTIONS =

12), comprising of questions regarding priors and (unconditional) independence of causes,

as well as reasoning questions relating to diagnostic reasoning and explaining away. For a

full list of questions and the inferences these represented see Table 1. For some inferences,

such as Diagnostic Reasoning and Explaining away, two questions were asked regarding

the same inference, one in qualitative format and one in quantitative format.

As mentioned in Section 3.2.1, participants in each group were required to reason

with different cover stories within which we additionally manipulated the priors of causes

in the common-effect structure. Three of the groups (GroupCOINS LOW, GroupCOINS MED,

GroupCOINS HIGH) reasoned with a coin-tossing cover story in which the two causes (C1

and C2) were represented by two simultaneously tossed coins (binary variables assum-

ing the value of either Heads or Tails) in separate rooms and the common effect took the

form of a light bulb (LB) in a different unit, that could switch on depending on the outcome

of the tosses (if at least one coin landed Heads, the light bulb turns on). An additional three

groups (GroupBALL CONTAINERS LOW, GroupBALL CONTAINERS MED, GroupBALL CONTAINERS HIGH)

were reasoned with a cover story within which the two causes were represented by two

balls (binary variables assuming the value of either copper or rubber) simultaneously

drawn from two independent containers and the common effect was again a light bulb

in a separate electric circuit, that could switch on depending on the outcome of the draw

(if at least one of the balls placed in the circuit is copper, the light bulb turns on). Fi-
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nally, the remaining three groups (GroupDINNER LOW, GroupDINNER MED, GroupDINNER HIGH)

were presented with a cover story in which the two causes were represented by two in-

dividuals, Michael and Tom, and the common effect was represented by a third individ-

ual, Helen, who would drink wine only if at least one of the two aforementioned people

brought wine to a a dinner party (‘Helen’ was a binary variable assuming the value of either

‘drinking wine’ or ‘not drinking wine’). For full materials visit Open Science Framework,

https://osf.io/aqjkp/.

Table 1: Inference types and questions found in the questionnaire for Experiment 1.

Question Number Inference Type Key Inferences Question Type

1
Priors

P(C1) Quantitative

2 P(C2) Quantitative

3
Independence

P(C2 | C1) Qualitative

4 P(C1 | ∼C2) Qualitative

5 , 6
Diagnostic Reasoning

P(C1 | E)-R-P(C1) Qual. + Quant.

7 , 8 P(C2 | E)-R-P(C2) Qual. + Quant.

9 , 10 Explaining Away P(C1 | E,C2)-R-P(C1 | E) Qual. + Quant.

11 , 12 Logic14 P(C1 | E,∼C2)-R-P(C1 | E) Qual. + Quant.

Note: -R- stands for ‘in relation to’.
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3.2.3. Procedure

Participants in each of the nine groups were initially presented with the pertinent cover

story and were given explicit information on the common-effect model embedded within

the cover story including the prior probability of each cause, and the causal relationships

within the model. In the coins and the dinner party cover stories the priors were presented

the form of a percentage, whereas in the ball containers cover story they were presented

as a fraction/ratio (e.g. of the 10 balls, there are 2 copper balls and 8 rubber balls in each

urn).15 The priors in cases of the coins and the dinner party cover stories were given only in

a textual form. The priors in the ball container cover story (i.e. the number of ball of each

type) and the causal relations in all cover stories were given to participants in both textual

form and in visual form (graphical representation). In order to ensure participants under-

stood the structure, they were provided with a textual account by which each cause could

independently bring about the common effect. Subsequently, participants were presented

with the inference questionnaire (for questions see Table 1). The questionnaire required

participants to sequentially answer questions: firstly regarding priors of causes, secondly

independence of causes, thirdly diagnostic reasoning about each cause, and finally regard-

ing explaining away. The graphical and textual details of the cover story were present on

the same page as the relevant inference questions so participants could access these details

at any point.

Questions marked as quantitative in Table 1 required participants to provide numer-

ical estimates on a slider with a scale ranging from 0% to 100%. Questions marked as

14We have labeled questions 11 and 12 as ‘logic’ questions, since our set-up was deterministic and learning

that one cause did not happen, whilst knowing that the effect happened, entailed (by logic) that the other

cause must have happened, i.e. P(C1 | E,∼C2) = 1.
15Although the way priors were conveyed depended on a cover story, in all cover stories they were elicited

in the same manner, i.e. as a percentage on a scale from 0% to 100%.
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qualitative, required participants to select one of three options: the probability increases,

decreases, or stays the same when asked about e.g. P(C2 | C1) given no knowledge of

whether E is present or not. To investigate participants’ diagnostic and explaining away

reasoning we employed both qualitative and quantitative question formats. For example,

participants in the coin tossing cover story, after finding out that the light bulb is on, were

asked both a qualitative diagnostic reasoning question (e.g. Q5): “Does the probability

that Coin 1 landed Heads change (compared to Q1, where you said: X%) after you find

out that the light bulb turned on?” as well as a quantitative one: “What do you now think

is the probability that Coin 1 landed Heads?”. This approach enabled us to capture the

relational nature of explaining away, as well as the direction and magnitude of change of

beliefs given certain evidence. Additionally, in order to better understand participants’

reasoning, some questions prompted participants to provide written explanations for their

answers. All evidence (i.e. new states of cause or effect variables) was provided to partic-

ipants both textually (e.g. in groups reasoning with a coin tossing cover story: “You walk

into Unit 3 and see that the light bulb is on”) as well as visually (as an updated graphical

representation of the model).

3.3. Results

Participants’ answers to all qualitative questions in the inference questionnaire are rep-

resented in Figure 4 and their responses to all quantitative questions are in Figure 5.

3.3.1. Overall performance

To test for a main effect of cover story and/or priors on participants’ judgment accuracy

we initially coded all participants’ answers as correct (1) or incorrect (0). For all quanti-

tative estimates, an answer was considered correct if it fell within ± .02 of the normative

probability estimate. This allowed us to have a comparative measure of participants’ accu-

racy for both qualitative and quantitative types of inferences. Subsequently, if an inference
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above the bars indicate normative answers.
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correct (normative) answers. Gray lines between data points depict how participants changed their

probability estimates from one questions to another, with curved lines indicating that a participant

did not change (within ± .02) their probability estimate.
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judgment had a symmetrical pair, i.e. if both inference judgements were of the same infer-

ence type (such as inferences regarding priors, independence, qualitative, and quantitative

diagnostic reasoning, see Table 1) we combined each participant’s coded response to both

questions into a single coded response: if a participant answered both questions correctly,

the response was coded as 1; otherwise 0. This left us with eight coded question-types

regarding: priors, independence, qualitative diagnostic reasoning, quantitative diagnostic

reasoning, qualitative explaining away, quantitative explaining away, qualitative logic, and

quantitative logic. For descriptive statistics of participant accuracy within each group see

Table 2 below.

Table 2: Descriptive statistics of participants’ overall performance per group in Experiment 1.

Group Proportion Correct Answers 95% CI

Coins Low .55 [.48, .62]

Coins Med .61 [.56, .66]

Coins High .48 [.41, .54]

Balls Containers Low .55 [.49, .62]

Balls Container Med .58 [.53, .64]

Balls Containers High .49 [.44, .54]

Dinner Party Low .58 [.52, .63]

Dinner Party Med .59 [.55, .62]

Dinner Party High .51 [.47, .55]
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To test the effect of Cover story and Priors on participants’ overall performance (in

the coded form) on the eight question-types, we built a generalized linear mixed effects

model with a binomial link function using the lme4 package (Bates, Mächler, Bolker, &

Walker, 2014). The model had two fixed effects, Cover story and Priors, with a random

intercept for each participant (there was no random slope for participant since Cover story

and Priors vary between participants). We found a main effect of Priors, z = −3, p = .003

and no main effect of Cover story, z = 0.56, p = .58. We also found no interaction between

Cover story and Priors, z = 0.12, p = .9. Including the predictors (Cover story and Priors)

in the model did improve model fit (χ2(3) = 9.33, p = .025) compared to just having an

intercept as a predictor.

Given that in the above analyses we found no main effect of Cover story on accuracy

nor an interaction between Cover story and Priors, we collapsed data across cover stories to

perform the subsequent analyses regarding participants’ performance on explaining away.

Therefore, we now compare across three groups : a low priors group (GroupLOW, N = 150),

a medium priors group (GroupMEDIUM, N = 152), and a high priors group (GroupHIGH,

N = 151).

3.3.2. Acceptance of priors

A Chi-Square test of independence illustrated a significant difference in the propor-

tion of participants who accurately stated the priors of both causes between the three

groups, χ2(2) = 12.9, p = .002. Post-hoc pairwise comparisons using Benjamini and

Hochberg’s (1995) false discovery rate (FDR) procedure with q∗ = 0.0516 indicated a

significant difference between GroupMEDIUM (92.8%) and GroupHIGH (78.1%), corrected

p = .002. No significant difference was found between GroupLOW (84.7%) and either

16The same applied to all other pairwise comparisons in the paper.
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GroupMED, corrected p = .062, and GroupHIGH, corrected p = .192.

In addition, for each participant we computed an absolute difference from the stated

priors. Since the data are quite clearly non-normally distributed (Figure 5) we adopted

non-parametric tests. A Kruskal–Wallis test illustrated a significant effect of Priors on the

absolute value differences, H(2) = 31.9, p < .001. Pairwise comparisons of the mean

ranks between groups showed a significant difference between GroupMEDIUM and both

GroupHIGH (di f f erence = 83.2, critical di f f erence = 50.917) and GroupLOW (di f f erence =

56.1, critical di f f erence = 51); the difference between GroupHIGH and GroupLOW was not

significant (di f f erence = 27, critical di f f erence = 51.1). Though the difference between

the above groups was significant, the high proportion of participants who stated the correct

priors for both causes and the low absolute differences from the stated priors within each

group indicate that overall participants accepted priors of causes given to them, across

all conditions (see also the distributions of participants responses for P(C1) and P(C2) in

Figure 5).

3.3.3. Independence of causes

For a breakdown of the frequency of participants’ choices on independence ques-

tions see Figure 4. Within each group we obtained the percentage of people who cor-

rectly answered both questions regarding the independence of causes (Q3 and Q4 in Table

1). Within GroupLOW this was 88.7%, within GroupMEDIUM this was 95.4% and within

GroupHIGH this was 88.1%. These high percentages demonstrate that the vast majority of

participants did not violate the assumption of the independence of causes (before learning

the evidence) in any group.

17Throughout the paper, the critical difference at α = .05 was corrected for the number of tests.
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3.3.4. Diagnostic reasoning

Independent analyses were conducted on qualitative and quantitative diagnostic rea-

soning questions (Qs 5–8 in Table 1).

Qualitative. A Chi-Square test of independence illustrated a significant difference in the

proportion of participants who accurately answered both qualitative questions relating to

diagnostic reasoning between the three groups, χ2(2) = 52.27, p < .001. Post-hoc pair-

wise comparisons using the FDR procedure illustrated a significant difference between

GroupLOW (45.3%) and both GroupMEDIUM (17.1%), corrected p < .001 and GroupHIGH

(11.9%), corrected p < .001. No significant difference was found between GroupMEDIUM

and GroupHIGH, corrected p = .26. As can be seen from Figure 4 almost half of the par-

ticipants in GroupLOW indicated the change of probability in the correct direction, which

significantly differed from the percentage of participants in GroupMEDIUM and GroupHIGH.

This is an interesting finding as it seems to suggest that a larger normative quantitative

difference between the two probabilities corresponds to a larger proportion of participants

following the normative qualitative direction. Here we have that the largest probability

increase was in the low priors condition: P(Ci | E)− P(Ci) = .36, followed by the medium

priors condition where the increase was .17 and the high priors condition where it was

only .07. The size of these quantitative normative quantitative difference between the two

probabilities directly corresponded to size of the proportions of participants who answered

the qualitative questions in accordance with the normative model.

Quantitative. Fischer’s exact test of independence illustrated a significant difference in the

proportion of participants who correctly answered both quantitative diagnostic reasoning

questions across the three groups, p = .002. Post-hoc pairwise comparisons using the FDR

procedure illustrated a significant difference between GroupLOW (0%) and GroupMEDIUM

(6.6%) , corrected p = .005. No significant difference was found between GroupHIGH
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(2.6%) and both GroupLOW, corrected p = .17, and GroupMEDIUM, corrected p = .17.

The low percentages suggest that all groups performed poorly compared to the normative

model (see also the distributions of responses for P(C1 | E) and P(C2 | E) in Figure 5).

To gauge how much participants deviated from the normative estimates, we computed

a sample standard deviation from the normative response (snorm) for each group. On

P(C1 | E) question, for GroupLOW, snorm = 24.5, 95% CI [22.1, 27]18; for GroupMEDIUM,

snorm = 17.9, 95% CI [16.5, 20.3]; for GroupHIGH, snorm = 17.1, 95% CI [15.1, 20.1]. On

P(C2 | E) question, for GroupLOW, snorm = 24.2, 95% CI [21.9, 26.5]; for GroupMEDIUM,

snorm = 17.9, 95% CI [16.4, 20.3]; for GroupHIGH, snorm = 16.9, 95% CI [15, 19.1]. This

suggests that GroupLOW most deviated from the normative answers compared to the other

two groups. This is expected from the normative perspective since the normative amount

of diagnostic reasoning (the difference between P(Ci) and P(Ci | E)) is the highest in

GroupLOW.

We also explored the amount and direction of change in participants’ probabilistic

estimates from their given priors to their estimates after learning about the effect. As

such we conducted the Wilcoxon signed-rank test on the difference between participants’

estimates on each prior question and the related diagnostic reasoning question (i.e. between

P(C1) and P(C1 | E) and between P(C2) and P(C2 | E)). When comparing these differences

with the normative differences, the null hypotheses of all Wilcoxon signed-rank tests was

that the difference between participants’ estimates equals to the corresponding normative

difference. Table 3 shows the normative differences, the empirical differences of medians,

and p-values of Wilcoxon signed-rank tests.

As can be seen from the table, participants heavily under-adjusted their probability esti-

18The 95% confidence intervals were calculated using the BCa nonparametric bootstrap confidence inter-

val method (with 106 bootstrap replicates) as recommend by Meeker, Hahn, and Escobar (2017).
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Table 3: Quantitative differences in diagnostic reasoning inferences per group in Experiment 1.

Inferences Normative difference Empirical difference of medians p-value

GroupLOW

P(C1 | E) − P(C1) .36 .3 < .001

P(C2 | E) − P(C2) .36 .3 < .001

GroupMEDIUM

P(C1 | E) − P(C1) .17 0 < .001

P(C2 | E) − P(C2) .17 0 < .001

GroupHIGH

P(C1 | E) − P(C1) .07 0 < .001

P(C2 | E) − P(C2) .07 0 < .001

mates since the null hypothesis that the normative difference is equal to the empirical dif-

ference is strongly rejected in all cases. Furthermore, only in GroupLOW did the empirical

difference go in the normative direction. In both GroupMEDIUM and GroupHIGH the empiri-

cal differences of medians was 0 suggesting that in these groups participants’ quantitative

diagnostic reasoning estimates did not significantly differ from their priors estimates.

3.3.5. Direct explaining away

Independent analyses were conducted on qualitative and quantitative questions regard-

ing direct explaining away (Q9 and Q10 in Table 1).
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Qualitative. For a breakdown of the frequency of participants’ choices on the qualitative

direct explaining away question see Figure 4. A Chi-Square test of independence illus-

trated a significant difference in the proportion of participants who accurately answered the

qualitative question relating to explaining away between the three groups, χ2(2) = 12.25,

p = .002 . Similarly to the results regarding diagnostic reasoning (Section 3.3.4), post-hoc

pairwise comparisons using the FDR procedure illustrated a significant difference between

GroupLOW (36%) and both GroupMEDIUM (21.7%), corrected p = .013 and GroupHIGH

(19.9%), corrected p = .008. No significant difference was found between GroupMEDIUM

and GroupHIGH, corrected p = .8. This suggests that participants in GroupLOW performed

significantly better than participants in GroupMEDIUM and participants in GroupHIGH. Sim-

ilarly to qualitative diagnostic reasoning, this was congruent with the the size of the nor-

mative explaining found in the respective Priors conditions. Overall, however, the low

percentage of correct responses across groups suggest poor performance in this category.

Quantitative. A Chi-Square test of independence illustrated a significant difference in the

proportion of participants who accurately answered the quantitative question regarding

direct explaining away between the three groups, χ2(2) = 34.74, p < .001. Post-hoc

pairwise comparisons using the FDR procedure illustrated a significant difference between

GroupMEDIUM (82.9%), and both GroupLOW (52.7%), corrected p < .001 and GroupHIGH

(57.6%), corrected p < .001. No significant difference was found between GroupLOW

and GroupHIGH, corrected p = 0.46. This suggests that in each group over half of the

participants correctly answered the direct explaining away question.

For each group we also computed a sample standard deviation from the normative

response (snorm). For GroupLOW, snorm = 22.4, 95% CI [18.7, 27.2]; for GroupMEDIUM,

snorm = 15.2, 95% CI [12, 18.9]; for GroupHIGH, snorm = 20.8, 95% CI [17.3, 25]. This sug-

gests that GroupMEDIUM least deviated from the normative answers compared to the other
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two groups. The relatively high percentages of correct answers and a relatively low devia-

tion from the normative answers may suggest good performance on quantitative direct ex-

plaining away. Although this may appear as being at odds with our finding of overall poor

performance on qualitative direct explaining away, a quick look at Figure 5 reveals that a

large number of participants repeated the priors in P(C1 | E), P(C1 | E), and P(C1 | E,C2)

(this is discussed in Section 3.3.9 below). Since in our study P(C1) = P(C1 | E,C2) and a

large proportion of participants did accept the priors (see Section 3.3.2), this suggests that

a large proportion did correctly answer the quantitative direct explaining question. This

result highlights the importance of also including qualitative relational questions in such

contexts.

3.3.6. Logic

Independent analyses were conducted on qualitative and quantitative ‘logic’ questions

(Q11 and Q12 in Table 1).

Qualitative. A Chi-Square test of independence illustrated a significant difference in the

proportion of participants who accurately answered the qualitative question relating to ex-

plaining away between the three groups, χ2(2) = 6.88, p = .032. Post-hoc pairwise com-

parisons using FDR procedure illustrated a significant difference between GroupMEDIUM

(82.2%) and GroupHIGH (69.5%), corrected p = .043. No significant difference was found

between GroupLOW (73.3%) and both GroupMEDIUM, corrected p = .127, and GroupHIGH,

corrected p = .548. As can be seen from Figure 4, the majority of participants did, how-

ever, correctly report the direction of the probability change.

Quantitative. A Chi-Square test of independence illustrated no significant difference in

the proportion of participants who accurately answered the quantitative question relating

to explaining away between the three groups, χ2(2) = 4.26, p = .119. The proportions
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were: GroupLOW, 68.7%; GroupMEDIUM, 77%; and GroupHIGH, 66.9%. The high percent-

ages suggest that in each group a majority of the participants correctly answered the logic

question.

Overall these findings illustrate that across conditions a high percentage of participants

was able to correctly answer both quantitative and qualitative logic questions, suggesting

they largely understood the (deterministic) relations between variables in the 3-node struc-

ture.

3.3.7. Explaining away: relational concept

Given the relational nature of explaining away, to better investigate participants’ updat-

ing behaviour across this pattern of inference, we conducted aggregate analyses on ques-

tions pertaining to diagnostic reasoning, explaining away, and logic. Independent analyses

were conducted on qualitative and quantitative relational explaining away questions.

Qualitative. To explore participants’ qualitative relational explaining away, we conducted

the analysis on questions relating to direct explaining away and logic (Q9 and Q11 in

Table 1).19 A Chi-Square test of independence illustrated a significant difference in the

proportion of participants who accurately answered both qualitative questions relating to

explaining away concept between the three groups, χ2(2) = 12.8, p = .002. Post-hoc pair-

wise comparisons using the FDR procedure illustrated a significant difference between

GroupLOW (32.7%) and GroupHIGH (15.9%), corrected p = .003 and between GroupLOW

and GroupMEDIUM (20.4%), corrected p = .033. No significant difference was found be-

tween GroupMEDIUM and GroupHIGH, corrected p = .386. Similarly to the qualitative diag-

19We did not include the two qualitative diagnostic reasoning questions here since these two questions

are about the relationship between the priors and diagnostic reasoning. Our aim was to analyze participants

understanding of the inequalities in (2) which are about the relations between diagnostic reasoning and direct

explaining away (Q9) and between direct explaining away and ‘logic’ (Q11).
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nostic reasoning and the qualitative direct explaining away results, these proportions seem

to correspond to the size of the normative relational explaining away in respective Priors

conditions. The percentages, however, are again low suggesting poor overall performance.

Quantitative. In regards to the quantitative relational explaining away, the questions we

included in the analyses were those relating to the updating of C1, namely, P(C1 | E),

P(C1 | E,C2), and P(C1 | E,∼C2). These are Q6, Q10 and Q12 in Table 1.

A Friedman’s ANOVA was carried out on participants’ estimates of the quantitative

relational explaining away questions, within each of the groups (see Figure 6). Results il-

lustrated a significant difference between these estimates within GroupLOW, χ2(2) = 155.9,

p < .001, within GroupMEDIUM, χ2(2) = 190.9, p < .001 and within GroupHIGH, χ2(2) =

157.2, p < .001.

Wilcoxon signed-rank tests were carried out to compare participants’ estimates with

normative ones (see Table 4 below). In each of the tests, the null hypothesis was that

the empirical difference between the pairs of inferences of interest would equal the cor-

responding normative difference . As can be seen from the table, participants mostly

under-adjusted their probability estimates since the null hypothesis that the normative dif-

ference is equal to the empirical difference is strongly rejected in most cases except in

GroupHIGH between P(C1 | E,C2) and P(C1 | E,∼C2) where participants appear to have

sufficiently shifted their estimates. The participants in GroupLOW and GroupMEDIUM have

thus under-adjusted their estimates despite the difference in medians between P(C1 | E,C2)

and P(C1 | E,∼C2) being equal to the normative difference for these groups.

3.3.8. Diagnostic split

To test the diagnostic split hypothesis we included in our analysis only participants

who reported the correct priors and then calculated the proportion of these participants

who reported .5 (± .02) as their estimate for both P(C1 | E) and P(C2 | E). These were:
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Figure 6: Box plots of participants’ quantitative relational explaining away responses in three

groups along with the normative estimates in Experiment 1.
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Table 4: Within-group explaining away in Experiment 1.

Inferences Normative difference Empirical difference of medians p-value

GroupLOW

A − B .36 .3 < .001

C − B .8 .8 < .001

GroupMED

A − B .17 0 < .001

C − B .5 .5 < .001

GroupHIGH

A − B .07 0 < .001

C − B .3 .3 .067

Note: A := P(C1 | E), B := P(C1 | E,C2), C := P(C1 | E,∼C2).

50.4% in GroupLOW, 78.7% in GroupMED and 13.6% in GroupHIGH. A Chi-Square test

of independence illustrated that these proportions significantly differed from each other,

χ2(2) = 109.2, p < .001. All post-hoc pairwise comparisons using the FDR procedure

were significant with corrected p < .001. These proportions suggest that a large proportion

of participants who correctly answered the priors questions provided estimates predicted

by the diagnostic split hypothesis. Note that both the diagnostic split hypothesis and the

propensity hypothesis make exactly the same prediction in the medium priors condition,

namely stay at the prior of .5. Therefore, the higher proportion observed in the GroupMED is

expected as the .5 response is predicted by both hypotheses. The relatively low proportion
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of participants observed in GroupHIGH suggests that people are unwilling to reduce the

probability to .5 in diagnostic reasoning from the high prior of .7. Overall then, these

results partly support the diagnostic split hypothesis.

At the outset of the paper, we predicted that the diagnostic split hypothesis would be

able to account for a significant amount of failures in (quantitative) diagnostic reasoning

and (quantitative) relational explaining away. To explore how much of these failures can

be explained by the diagnostic split hypothesis we built simple cross-tabulations. We se-

lected only participants who correctly answered the both priors questions and collapsed

the data across all the condition. We then cross-tabulated participants’ responses as in line

(‘yes’) or not in line (‘no’) with the diagnostic split hypothesis and correct (‘yes’) or incor-

rect (‘no’) quantitative diagnostic reasoning as well as correct (‘yes’) or incorrect (‘no’)

quantitative relational explaining away (see Table 5) (these tables also included responses

that were in line (‘yes’) or not in line (‘no’) with the propensity interpretation since this

was relevant for the section below).20 First, notice that the cross-tabulations in for both di-

agnostic reasoning and explaining way look very similar suggesting that participants who

correctly answer the quantitative diagnostic reasoning questions went on to also correctly

answer questions related to the quantitative direct explaining and the quantitative logic

question. However, as only 13 participants correctly answered the quantitative diagnostic

reasoning question this applied to only about 3% of the data. Second, from the table we

20We have not included the diagnostic split hypothesis in cross-tabulations that included qualitative di-

agnostic reasoning and qualitative relational explaining away, as we did with the propensity hypothesis,

since (i) the propensity hypothesis has a very specific quantitative prediction that does not dependent on

the qualitative directional of update from the priors and (ii) the diagnostic split hypothesis would have the

same qualitative prediction as the normative account in the low priors conditions (i.e. the probability should

increase) and in order not to conflate these two we have not included the diagnostic split hypothesis in

cross-tabulations on the qualitative results.
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can see that the diagnostic split hypotheses accounted for about 51% violations in quan-

titative diagnostic reasoning and in quantitative relational explaining away. This finding

suggests that the diagnostic split reasoning played a significant part in violations of both

the quantitative diagnostic reasoning and quantitative relational explaining away.

Table 5: A cross-tabulation for correct/incorrect (yes/no) quantitative diagnostic reasoning and

quantitative relation explaining away as well as for in line/not in line with (yes/no) the diagnostic

split hypothesis and the (quantitative) propensity hypothesis predictions in Experiment 1.

Diagnostic reasoning Explaining away

Quantitative Quantitative relational

Yes No Yes No

Diagnostic split Propensity interpretation
(quantitative)

Yes Yes 0 101 0 101

Yes No 0 90 0 90

No Yes 0 99 0 99

No No 13 83 12 84

3.3.9. Propensity interpretation

In order to test our propensity hypothesis, we calculated the proportion of people who

did not update in the face of learning evidence and learning the other cause occurred.

Qualitative. We calculated the proportions of participants who, having stated the cor-

rect priors, selected ‘stay the same’ as an answer to both qualitative diagnostic reason-
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ing questions (Q5 and Q7) as well as the qualitative direct explaining away question

(Q9). Across each cover story these percentages were: 63.8% for GroupCOINS, 53.8%

for GroupBALL CONTAINERS, and 46.8% for GroupDINNER. A Chi-Square test of indepen-

dence found a significant difference between these proportions, χ2(2) = 7.96, p = .019.

Post-hoc pairwise comparisons using the FDR procedure showed the only difference to

be between GroupCOINS and GroupDINNER, corrected p = .021. No significant difference

was found between GroupCOINS and GroupBALL CONTAINERS, corrected p = .213, or between

GroupBALL CONTAINERS and GroupDINNER, corrected p = .316.

Quantitative. Out of the participants who correctly stated the priors, we calculated the

proportions of those who provided the priors as their estimate to P(C1 | E), P(C2 | E),

and P(C1 | E,C2) (i.e. Q6, Q8, and Q10). Collapsing across the priors conditions, the

percentages were: 60.8% for GroupCOINS, 50% for GroupBALL CONTAINERS and 44.6% for

GroupDINNER. Chi-Square test of independence illustrated that these proportions signifi-

cantly differed from each other, χ2(2) = 7.2, p = .028. Post-hoc pairwise comparisons

using the FDR procedure showed the only significant difference to be between GroupCOINS

and GroupDINNER, corrected p = .034. No significant difference was found between

GroupCOINS and GroupBALL CONTAINERS, corrected p = .198, or between GroupBALL CONTAINERS

and GroupDINNER, corrected p = .421.

The results from the qualitative and quantitative participants’ responses fit the propen-

sity hypothesis prediction: we found that significantly more participants stay at the priors

in the Coins cover story where we expected the propensity hypothesis to be the most pro-

nounced compared to the Dinner cover story, with the Ball containers cover story falling

in between.

Furthermore, from Table 5 we can see that the propensity hypothesis accounted for

about 53% of violations in both the quantitative diagnostic reasoning and quantitative re-
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lational explaining away. We also cross-tabulated participants’ answers as (not) in line

with the propensity hypothesis and (in)correct qualitative direct and relational explaining

away and (in)correct quantitative direct explaining away. Table 6 shows that the propen-

sity hypothesis accounted for about 73% of violations in qualitative diagnostic reasoning,

about 74% of violations in qualitative direct explaining away, and about 71% of violations

in qualitative relational explaining away. The high percentages suggest that the propensity

hypothesis was driving the majority of violations in all these inferences. Table 7 further

elucidates the point from Section 3.3.5 where we found that an unexpectedly large propor-

tion of participants correctly answered the quantitative direct explaining away question.

Here we see that about 70% of these ‘correct’ responses were in fact responses given in

line with the propensity hypothesis where participants repeated the priors when answering

the quantitative direct explaining away question.

Table 6: A cross-tabulation for correct/incorrect (yes/no) qualitative diagnostic reasoning and both

direct and relational qualitative explaining away as well as for in line/not in line with (yes/no) the

(qualitative) propensity hypothesis predictions in Experiment 1.

Diagnostic reasoning Qualitative explaining away

Qualitative Direct Relational

Yes No Yes No Yes No

Propensity interpretation
(qualitative)

Yes 0 211 0 211 0 211

No 95 80 100 75 89 86
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Table 7: A cross-tabulation for correct/incorrect (yes/no) quantitative direct explaining away as

well as for in line/not in line with (yes/no) the (quantitative) propensity hypothesis predictions in

Experiment 1.

Quantitative direct explaining away

Yes No

Propensity interpretation
(quantitative)

Yes 200 0

No 86 100

3.4. Discussion

The methodology we used in Experiment 1 has resulted in the large proportions of par-

ticipants accepting the priors given to them, not violating the independence of the causes

before learning the effect, and correctly answering the final logic question suggesting that

they did understand the causal structure and the parameters of the cover stories. Despite

these encouraging improvements, our findings echo those of the extant literature as par-

ticipants overall insufficiently explained away. This was reflected in both poor diagnostic

reasoning and poor direct qualitative explaining away as well as in insufficient qualitative

relational explaining away in all three groups. Quantitative relational explaining away

was insufficient in GroupLOW and GroupMED and marginally sufficient in GroupHIGH. The

sufficient quantitative relational explaining away in GroupHIGH could be attributed to the

small normative amount of explaining away in the high condition which makes it easier

for participants in this conditions to sufficiently explain away compared to participants in
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the other two conditions.

Since the different priors lead to different amounts of the normative explaining away

we have predicted that participants would explain away more in low priors condition than

in both medium and high priors conditions, and that participants reasoning with medium

priors conditions would explain away more than those reasoning with high priors. We

have found that participants’ quantitative responses only partially supported this predic-

tion: only in diagnostic reasoning we have found that the difference P(Ci | E)−P(Ci) is the

highest in the low condition, followed by the medium and the high condition. This was

not found in participants’ responses to quantitative questions regarding both the direct and

relational explaining away. Interestingly, however, we have found that the proportions of

participants correctly answering the qualitative questions regarding diagnostic reasoning

and both the direct and relational explaining away did directly correspond to the size of

the quantitative difference between the two probabilities and the normative amount of ex-

plaining away (which is dictated by the priors), with the highest proportion of participants

correctly answering these qualitative questions being in the low conditions, followed by

the medium condition, with the smallest proportion of correct answers found in the high

condition. This finding is lending support to a claim that people are sensitive to the size of

the normative differences between the probabilities being compared: the greater the quan-

titative normative difference the greater the proportion of people who will correctly choose

the normative qualitative direction of probability change between the two probability esti-

mates. This, however, was not the case with the participants’ quantitative estimates which

could be attributed to our two hypotheses.

As predicted by the propensity interpretation hypothesis, we found that a significant

proportion of participants reported that P(Ci) = P(Ci | E) = P(Ci | E,Cj) in both qualita-

tive and quantitative questions. Moreover, we found that this proportion was the highest

when participants were reasoning with the cover story in which we expected the propensity

53



interpretation to be the most pronounced (Coins cover story) and the lowest when partic-

ipants reasoned with the cover story in which we expected the propensity interpretation

to he the least pronounced (Dinner party), with the third cover story (Ball and containers)

falling between. This is exactly what is predicted by the propensity hypothesis. Further-

more, the cross-tabulations showed that the propensity hypotheses accounted for over 50%

of violations in quantitative diagnostic reasoning and relational explaining away and over

70% of violations in qualitative diagnostic reasoning and explaining away (both direct and

relational).

Finally, regarding our diagnostic split hypothesis we found that a significant proportion

of participants in the low and medium conditions did split the probability space between

the two causes in diagnostic reasoning and assigned .5 probability to each cause with the

hypothesis accounting for over 50% of violations in quantitative diagnostic reasoning and

relational explaining away. However, as the proportion of participants was significantly

lower in the high conditions, the diagnostic split hypothesis was only partly supported.

These results may suggest that people split the probability space in diagnostic reasoning

only when the update to the diagnostic split prediction from the priors is in the qualita-

tively normative direction, a notion that is further explored in Experiment 2. The cross-

tabulations in Table 5 also pointed that correct quantitative diagnostic reasoning could be

predictive for explaining away: participants who correctly answered the quantitative di-

agnostic reasoning questions also correctly answered questions related to both the direct

explaining away and the quantitative logic question. This is an interesting finding on its

own as it may suggest that the crucial part in explaining away is diagnostic reasoning and

that understanding violation in diagnostic reasoning will possibly lead to understanding

violations in explaining away.

Taken together, the two hypotheses accounted for about 78% of violations in quan-

titative diagnostic reasoning and quantitative relational explaining away. Given this and
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the other above-mentioned high percentages, we can conclude that the diagnostic split hy-

pothesis and the propensity hypothesis were able to explain a significant amount of the

observed insufficiency in explaining away.

4. Experiment 2

4.1. Motivations

In Experiment 1 the diagnostic split hypothesis had as a prediction .5 probability for

each cause in diagnostic reasoning. However, it is not uncommon that people assign prob-

ability of .5 to events when they want to express their lack of confidence in their answer

or when they want to express that they do not know what the answer is (see for example

Fischhoff & Bruine De Bruin, 1999). So rather than following the diagnostic split strategy,

an alternative explanation regarding Experiment 1 findings where some people gave .5 as

their estimates to diagnostic reasoning questions, is that these people were expressing that

they did not know the answers. The goal of Experiment 2 was to disentangle the two pos-

sibilities and further extend results of Experiment 1 to more than 2 causes. To do so, in

Experiment 2 we prompted participants to reason with a 4-node common-effect CBN with

three causes (see Figure 7).

E

C1 C2 C3

Figure 7: A common-effect CBN model with three causes.

In the CBN from Figure 7, assuming equal priors of all 3 causes and the deterministic
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set-up like in Experiment 1, the diagnostic split hypothesis would predict that P(C1 | E) =

P(C2 | E) = P(C3 | E) = 1
3 ≈ .33. As .33 is sufficiently distinct from a .5 response that

could also be a stand in for ‘I am not sure’ or ‘I do not know’, if people’s diagnostic rea-

soning judgments go to .33 that would suggest that these people do employ the diagnostic

split strategy.

Another goal of Experiment 2 was to further test a prediction of the diagnostic split

hypothesis whereby given high enough priors the split in the diagnostic reasoning would

result in P(Ci | E) being lower than P(Ci) (as was the case in High condition in Experiment

1), which is opposite to the normative direction of the update where P(Ci | E) > P(Ci).

In Experiment 1 we found that only around 14% of participants’ estimates went down

from .7 priors to .5 in diagnostic reasoning compared to half of participants’ estimates

that went up from .2 priors to .5 in diagnostic reasoning. This suggests that people were

significantly less inclined to reduce the probability of the causes in diagnostic reasoning.

Experiment 2 was set to test this prediction in the context of three causes. If the results

from Experiment 1 were replicated, then the diagnostic split hypothesis would need to be

revised to account for small proportion of people who reduce the probability of causes in

diagnostic reasoning.

4.2. Overview

Similarly to Experiment 1, we manipulated the priors of causes and presented par-

ticipants with different cover stories. We again employed a deterministic set-up where

the presence of at least one cause entailed the presence of the effect: P(E | C1,C2,C3) =

P(E | Ci,Cj,∼Ck) = P(E | Ci,∼Cj,∼Ck) = 1; and absence of all three causes entailed ab-

sence of the effect: P(E | ∼C1,∼C2,∼C3) = 0. In this experiment, however, the priors were

either either low, P(C1) = P(C2) = P(C3) = .2 or medium, P(C1) = P(C2) = P(C3) = .5.

We deemed these two variations of priors to be sufficient to (i) disentangle the probabilis-
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tic split strategy predictions from an alternative mentioned above and (ii) further test the

diagnostic split hypothesis on its prediction in the medium condition where P(Ci | E) =

.33 < .5 = P(Ci).

In this experiment we employed two cover stories from Experiment 1, one involving

balls and containers, and one involving a dinner party. We did not use the cover story

involving coin tossing since Experiment 1 findings suggested that participants reasoning

within that cover story stayed significantly more at their priors when answering diagnostic

reasoning questions compared to participants reasoning with the other two cover stories.

As the primary goal of Experiment 2 is to distinguish between people giving .5 estimate to

express their lack of confidence and the diagnostic split strategy, which required providing

estimates different to the prior probabilities, to increase the power of Experiment 2 we did

not include the cover story including coin tossing.

Further, since in Experiment 1 the tests regarding the propensity hypothesis were not

significant between the balls and containers cover story and the dinner party cover story

we have not directly tested the propensity hypothesis in Experiment 2. However, given that

the propensity hypothesis has a clear prediction in Experiment 2, namely P(Ci | E) = P(Ci)

for i = {1, 2, 3}, we again cross-tabulated the data to explore how much of the violation in

diagnostic reasoning can be explained by the propensity hypothesis.

Given the new structure in Figure 7, in the balls and container cover story the three

causes were now represented by three balls (binary variables assuming the value of either

copper or rubber), randomly selected from three independent containers and placed on

three gaps in an electric circuit. If at least one of the three balls was copper, a light bulb in

the circuit (common effect) would turn on. In the dinner party cover story the three causes

were represented by three individuals, Michael, Tom and Sam, and the common effect was

represented by a fourth individual, Helen, who would drink wine only if at least one of

the three aforementioned people brought wine to a party (‘Helen’ was a binary variable
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assuming the value of either ‘drinking wine’ or ‘not drinking wine’).

4.3. Methods

4.3.1. Participants and Design

A total of 119 participants (NMALE = 39, 2 participants identified as ‘other’, MAGE = 35

years). All participants were native English speakers who gave informed consent and were

paid £1 for partaking in the present study, which took on average 8.25 minutes to complete.

A between-participant design was employed and participants were randomly allocated

to one of 2 (cover story: ball containers, dinner party) × 2 (priors condition: low, medium)

= 4 groups NBALL CONTAINERS LOW = 28, NBALL CONTAINERS MED = 30, NDINNER LOW = 32,

NDINNER MED = 29).

4.3.2. Materials

Each of the groups was asked to complete an inference questionnaire (NQUESTIONS =

12), comprising of questions regarding priors and (unconditional) independence of causes,

as well as reasoning questions relating to diagnostic reasoning and explaining away. For

a full list of questions and the inferences these represented see Table 8. For diagnostic

reasoning inferences, two questions were asked regarding the same inference, one in qual-

itative format (e.g. Q7) and one in quantitative format (e.g. Q8).

Each of the four groups ether reasoned with low or medium priors and was either pre-

sented the balls and containers cover story or the dinner party cover story from Experiment

1 now adapted to include the third cause. For full materials visit Open Science Framework,

https://osf.io/aqjkp/.

4.3.3. Procedure

Like in Experiment 1, participants in each of the four groups were initially presented

with the pertinent cover story and were given explicit information on the common-effect
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Table 8: Inference types and questions found in the questionnaire for Experiment 2.

Question Number Inference Type Key Inferences Question Type

1

Priors

P(C1) Quantitative

2 P(C2) Quantitative

3 P(C3) Quantitative

4
Independence

P(C2 | C1) Qualitative

5 P(∼C3 | ∼C2) Qualitative

6 P(C1 | ∼C3) Qualitative

7 , 8

Diagnostic Reasoning

P(C1 | E)-R-P(C1) Qual. + Quant.

9 , 10 P(C2 | E)-R-P(C2) Qual. + Quant.

11 , 12 P(C3 | E)-R-P(C3) Qual. + Quant.

Note: -R- stands for ‘in relation to’.

model embedded within the cover story including the prior probability of each cause, and

the causal relationships within the model. This was done in both textual form and in visual

form (graphical representation). In order to ensure participants understood the structure,

they were provided with a textual account by which each cause could independently bring

about the common effect. Subsequently, participants were presented with the inference

questionnaire (for questions see Table 8). The questionnaire required participants to se-

quentially answer questions firstly regarding priors of causes, secondly independence of

causes and finally regarding diagnostic reasoning about each cause. The graphical and

textual details of the cover story were present on the same page as the relevant inference
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questions so participants could access these details at any point.

Questions marked as quantitative in Table 8 required participants to provide numer-

ical estimates on a slider with a scale ranging from 0% to 100%. Questions marked as

qualitative, required participants to select one of three options: the probability increases,

decreases, or stays the same when asked about e.g. P(C2 | C1) given no knowledge of

whether E is present or not. To investigate participants’ diagnostic reasoning we em-

ployed both qualitative and quantitative question formats. For example, participants in

groups reasoning with the balls and containers cover story, after finding out that the light

bulb is on, were asked both a qualitative diagnostic reasoning question (e.g. Q7): “Does

the probability that Ball 1 is a copper ball change (compared to Q1, where you said: X%)

after you find out that the light bulb turned on?” as well as a quantitative one: “What do

you now think is the probability that Ball 1 is a copper ball?”. Additionally, diagnostic rea-

soning questions prompted participants to provide written explanations for their answers.

All evidence (i.e. new states of cause or effect variables) was provided to participants both

textually (e.g. in groups reasoning with balls container cover story: “You uncover the light

bulb and find that it is turned on”) as well as visually (as an updated graphical represen-

tation of the model). One again, the graphical and textual details of the cover story were

present on the same page as the relevant inference questions so participants could access

these details at any point.

4.4. Results

Participants’ answers to all qualitative in the inference questionnaire are represented

in Figure 8 and their responses to all quantitative questions are in Figure 9.

4.4.1. Overall Performance

As in Experiment 1, to test for a main effect of cover story and/or priors condition

on participants’ judgment accuracy throughout the inference questionnaire we initially
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Figure 8: Distribution of participants’ responses to qualitative questions in Experiment 2. Asterisks
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Figure 9: Participants’ responses to quantitative questions in Experiment 2. Red horizontal lines are

correct (normative) answers. Gray lines between data points depict how participants changed their

probability estimates from one questions to another, with curved lines indicating that a participant

did not change (within ± .02) their probability estimate.
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re-coded all of participants’ answers as being either correct (1) or incorrect (0). For all

quantitative estimates, an answer was considered correct if it fell within ± .02 of the nor-

mative probability estimate. This allowed us to have a comparative measure of partici-

pants’ accuracy in both qualitative and quantitative types of inferences. Subsequently, we

combined each participants’ coded response to the symmetrical pairs of inference into a

single coded response: if a participant answered all three questions regarding priors cor-

rectly, the response was coded as 1; otherwise 0. Similarly was done for the questions

regarding independence and qualitative and quantitative diagnostic reasoning. This left

us with four coded question-types regarding: priors, independence, qualitative diagnostic

reasoning, and quantitative diagnostic reasoning. For descriptive statistics of participant

accuracy within each condition see Table 9 below.

Table 9: Descriptive statistics of participants’ overall performance per group in Experiment 2.

Group Proportion Correct Answers 95% CI

Balls Containers Low .51 [.42, .59]

Balls Container Med .47 [.39, .55]

Dinner Party Low .54 [.47, .61]

Dinner Party Med .49 [.44, .54]

To determine the effect of our manipulations on participants’ overall performance

throughout the task we built a GLM with binomial link function. The model had two fixed

effects, Cover story and Priors, with a random intercept for each participant (there was no

random slope for participant since Cover story and Priors vary between participants) and a

random effect for question type. We found no main effect of Priors, z = −0.89, p = .36 and
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no main effect of Cover story, z = −0.7, p = .49. We also found no interaction between

Cover story and Priors, z = −0.03, p = .97. Including the predictors (Cover story and

Priors) in the model did not improve model fit (χ2(3) = 1.32, p = .72) compared to just

having an intercept as a predictor. As our predictors were centered, this implied that the

data grand mean fits the data no worse than the model which includes both predictors.

4.4.2. Accuracy

Given we found no effect of scenario or priors on participants’ performance, we col-

lapsed all conditions in order to obtain the following descriptives regarding participants’

accuracy.

Prior probabilities. Collapsing across all conditions, 84% of participants correctly an-

swered all three questions pertaining to the prior probabilities i.e. P(C1), P(C2) and P(C3).

Independence. For a breakdown of the frequency of participants’ answers to qualitative

independence questions see Figure 8. Collapsing across conditions, 89% of participants

correctly answered all three questions relating to independence (i.e. Qs 4, 5, and 6 in Table

8).

Diagnostic Reasoning. For a breakdown of the frequency of participants’ answers to qual-

itative diagnostic reasoning questions see Figure 8. In regards to diagnostic reasoning,

26% of participants correctly answered all three qualitative diagnostic reasoning ques-

tions (Qs 7, 9, and 11 in Table 8) and only 2.5% of participants correctly answered all

three quantitative diagnostic reasoning questions (Qs 8, 10, and 12 in Table 8).

4.4.3. Diagnostic split

In order to test the diagnostic split hypothesis we firstly collapsed the cover story condi-

tion and subsequently computed the proportion of participants who, having given the cor-

rect priors (± .02) for all three causes, updated the probabilities of P(C1 | E), P(C2 | E) and
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P(C3 | E) to .33 (± .02) each. This proportion was 34% in group reasoning with low priors

and 3.8% in group reasoning with medium priors. Chi-Square test of independence illus-

trated showed that these proportions significantly differed from each other, χ2(1) = 13.48,

p < .001. Our findings replicate those of Experiment 1, as participants reasoning with

low priors employed the diagnostic split strategy significantly more than participants who

reasoned with medium priors.

Similarly to Experiment 1 analysis, we collapsed all data and cross-tabulated responses

of participants who correctly answered all three priors questions. Table 10 illustrates that

the diagnostic split hypothesis accounted for about 18% of violations in quantitative diag-

nostic reasoning.

4.4.4. Propensity interpretation

Although we have not explicitly tested the propensity hypothesis in this experiment,

the cross-tabulations showed how much of the violations in diagnostic reasoning can be

accounted for by this hypothesis. Table 10 shows that about 67% of the participants who

failed quantitative diagnostic reasoning reasoned in line with the propensity interpretation

(i.e. they provided estimates P(Ci | E) = P(Ci) (± .02) for all three causes). Table 11 fur-

ther shows that about 93% of the participants who failed qualitative diagnostic reasoning

reasoned in line with the propensity interpretation (i.e. they responded with ‘stay the same’

for all three comparison between the priors and the diagnostic reasoning). These results

suggest that the propensity hypothesis accounted for a significant proportions of failures

in diagnostic reasoning.

4.4.5. Discussion

In Experiment 2 we found that the majority of participants accepted the priors given

to them and did not violate the assumption of independence of causes prior to learning of

the effect. These findings corroborate those of Experiment 1 and suggest that participants
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Table 10: A cross-tabulation for correct/incorrect (yes/no) quantitative diagnostic reasoning as

well as for in line/not in line with (yes/no) the diagnostic split hypothesis and the (quantitative)

propensity hypothesis predictions in Experiment 2.

Quantitative diagnostic reasoning

Yes No

Diagnostic split Propensity interpretation
(quantitative)

Yes Yes 0 0

Yes No 0 18

No Yes 0 66

No No 2 14

had a good understanding of the causal structure, parameters, and the cover story they

were reasoning with. Despite this, we once again found that participants in all conditions

performed poorly in diagnostic reasoning, especially when this was measured as accuracy

of quantitative probability estimates.

In regards to our diagnostic split hypothesis, we found that it accounted for about

18% of violations in diagnostic reasoning. More specifically, we found that a significant

portion of participants employed this strategy in the group reasoning with low priors, who

increased their probabilities of P(Ci) from .2 to .33. Disparately, this strategy was scarcely

utilised by the groups reasoning with medium priors, who, according to the hypothesis

would have had to decrease their prior probability estimates of each cause from .5 to

.33. Our findings therefore strengthen the notion that the diagnostic split hypothesis is
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Table 11: A cross-tabulation for correct/incorrect (yes/no) qualitative diagnostic reasoning as well

as for in line/not in line with (yes/no) the (qualitative) propensity hypothesis predictions in Exper-

iment 2.

Qualitative diagnostic reasoning

Yes No

Propensity interpretation
(qualitative)

Yes 0 67

No 28 5

dependent on the normative direction of the update from the priors. When the diagnostic

split hypothesis predicts a value that is below that of the prior probability of the cause,

then participants’ behaviour does not follow the prediction. This is in accordance with

the findings of Experiment 1 where we observed a dearth of participants who engaged in

the diagnostic split strategy when reasoning with high priors (P(Ci) = .7)). An intuitive

explanation would be that as evidence is positively correlated with a cause, learning of the

presence of the evidence (effect) would not decrease the probability of the cause. Overall

findings from Experiment 2 solidify the presence of the diagnostic split hypothesis (in

the normative direction of update) and serve to demonstrate that underlying participants’

updating behaviour in Experiment 1 (attributing .5 to each cause) was not due to a lack of

confidence or an unawareness of the task, but an engagement in a specific strategy.

Another updating behaviour that accounted for a large cluster of participants’ data is

encompassed by the propensity hypothesis. We found that about two thirds of the viola-
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tions in quantitative and over 90% of violations in qualitative diagnostic reasoning can be

explained by the propensity hypothesis. Although we have not explicitly tested the propen-

sity hypothesis in Experiment 2 these proportions provide further empirical support for it.

Overall our findings show that the diagnostic split hypothesis and the propensity hy-

pothesis are able to explain the vast majority of the violations in our data, thus suggesting

that underlying pitfalls in diagnostic reasoning are pervasive, but could be accounted for

by specific reasoning strategies.

5. General Discussion

Over the past few decades, causal Bayesian networks have been successfully utilised

to build normative and descriptive accounts of various facets of human reasoning. Despite

this, they have so far failed to account for people’s behaviour when engaging in explaining

away. Empirical work in psychological literature has repeatedly demonstrated that people

violate the normative CBN model in numerous ways when carrying out explaining away

inferences.

We carried out two experiments utilising a novel methodology to address the issues

found in previous empirical studies of explaining away that arguably partly accounted for

people’s recurrent deviations from the normative model. For example, we explicitly stated

the prior probabilities of the causes found in our model and re-elicited these from par-

ticipants in order to ascertain that these were accepted. Moreover, we utilised relational

qualitative and quantitative question formats to elicit probabilistic inferences from partic-

ipants. This allowed us to assess people’s accuracy in providing single point estimates

as well as in detecting probabilistic changes in the model in a qualitative, more intuitive,

fashion. This approach was successful in making participants understand the parameters

and relational properties found within the common-effect structure they were required to

reason with. As such, in both experiments and across conditions, we found that a high
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proportion of participants answered correctly questions relating to priors, independence of

causes as well as the final logic question.

The assumption of independence is often reported to be violated in the majority of

studies that find insufficient explaining away (Rottman & Hastie, 2016; Mayrhofer &

Waldmann, 2015; Rehder & Waldmann, 2017). Assuming the causes are independent

before learning of the presence of the effect can be crucial since positive correlation be-

tween the causes can drastically reduce the normative amount of explaining away. No-

tably however, in both our experiments we found no violation of this assumption in any

condition. All studies that reported a violation of the assumption of independence utilised

quantitative questions to (unsuccessfully) elicit participants understanding of the indepen-

dence of causes. Given the findings from our experiments and given encouraging finding

from Rehder (2014a) who also employed a version of qualitative forced choice questions,

we advocate that utilising qualitative questions to address this understanding might be a

promising way forward.

In addition, in Experiment 1 we found that a large proportion of participants correctly

answered the final logic question. This finding is important as it suggests that participants

did understand the logical structure of the problem presented to them. However, some

studies on explaining away reported a small percentage of participants as being able to

solve questions pertaining to this inference. For instance, Rottman and Hastie (2016)

report that less than 10% in Experiment 1a and only around 29% in Experiment 1b of

responses correctly concluded that after learning the evidence, additionally learning that

one causes did not occur means that the other one must have occurred (in their study they

also had that P(E | ∼Ci,∼Cj) = 0 which implies that P(Ci | E,∼Cj) = 1).

Despite our encouraging findings regarding priors, independence, and logic, our main

findings echoed those of the extant literature as participants in both experiments overall

systematically violated the normative account of explaining away (Davis & Rehder, 2017;
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Fernbach & Rehder, 2013; Morris & Larrick, 1995; Rehder, 2014a; Rehder & Waldmann,

2017; Rottman & Hastie, 2016; Sussman & Oppenheimer, 2011). In Experiment 1 pitfalls

in relational explaining away comprised of both poor diagnostic reasoning and direct ex-

plaining away in both quantitative and qualitative questions. Further, participants’ answers

to quantitative inference questions were corresponding to different amounts of explaining

away only in diagnostic reasoning. Notably however, our results suggested that the propor-

tions of participants correctly answering the qualitative questions did directly correspond

to the normative amount of explaining away, a fining that should further be explored. In

addition, findings from both of our experiments allowed us to conclude that deviations

from the normative model observed in our experiments could not be attributed to struc-

tural violations to the normative model (i.e. violations of the independence condition), as

past literature intimated, but instead seem to arise, at least in part, from participants util-

ising certain sub-optimal reasoning strategies such as the diagnostic split and interpreting

probabilities as propensities.

5.1. Diagnostic split

The findings of the two experiments suggest that some people do equally split the

probability space between the two causes when engaging in diagnostic reasoning. As such,

we found that a significant proportion of participants’ answers aligned with predictions

made by the diagnostic split hypothesis. Furthermore, Experiment 2 tested the strategy in

the context of three causes and excluded an alternative explanation of the findings from

Experiment 1 that posits that participants who provided .5 as an estimate in diagnostic

reasoning were not driven by the diagnostic split strategy but rather trying to communicate

that low confidence or an inability to respond to the question. However, the findings from

Experiment 1 suggested that people were not willing to decrease the probability from the

priors to the prediction of the diagnostic split hypotheses; they rather stayed at the priors
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in diagnostic reasoning. As this was further explored and confirmed in Experiment 2, we

need to modify our diagnostic split hypothesis to account for this. The hypothesis then

holds only when its predictions align with the qualitative predictions of the normative

account: if, for example, the normative account implies that P(Ci) ≤ P(Ci | E) for 1 ≤

i ≤ n, then the diagnostic split hypothesis predicts that P(Ci | E) = 1
n when the priors are

equal, the set-up is deterministic, and P(Ci) ≤ 1
n .

Crucially, through the use of cross-tabulations we were able to illustrate that in Ex-

periment 1 adopting a diagnostic split strategy accounted for 51% of observed deviations

in both quantitative diagnostic reasoning and quantitative relational explaining away. In

Experiment 2 approximately 18% of violations in quantitative diagnostic reasoning could

be attributed to a diagnostic split strategy. Ultimately this allowed us to support the notion

that this strategy contributes significantly to the observed violations of explaining away.

So far we have only explored the diagnostic split hypothesis in a deterministic set-

up where the presence of at least one cause entails the presence of an effect and where

the effect cannot occur when none of the causes are present; or where after learning the

effect one of the causes (or both) must have happened, i.e. the causes are exhaustive.

However, there is evidence that the hypothesis also applies to less deterministic contexts.

For instance, Rottman and Hastie (2016) found spikes in data around the .5 probability

from their Experiment 1 where the priors were the same for the two causes and the causes

became exhaustive after learning the effect, but a presence of a cause did not entail the

presence of the effect. Whether the diagnostic split hypothesis holds in the context where

a presence of a cause does not entail the effect (but the causes are still exhaustive after

learning the effect) should be explored in future work.
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5.2. Propensity interpretation

The findings from both experiments also suggest that a large number of participants

remained at the priors when answering diagnostic reasoning and direct explaining away

questions. Moreover, Experiment 1 showed that the proportions of participants who re-

main at the priors are different in the three cover stories with the proportion of participants

being the largest in the cover story where we argued the propensity interpretation is the

most pronounced, the smallest in the cover story with the least pronounced propensity in-

terpretation, and in between in the third cover story. These findings fit the predictions of

the propensity interpretation, thus providing support for it. Further, we have found that

the propensity hypothesis is able to account for a significant amount of insufficiency in

explaining away. The cross-tabulations in Experiment 1 showed that the propensity in-

terpretation was able to account for 53% of violations in both the quantitative diagnostic

reasoning and quantitative relational explaining away and over 70% of violations in qual-

itative diagnostic reasoning, direct and relational explaining away. In Experiment 1 we

found that the propensity hypothesis could account for over 90% of failures in qualita-

tive diagnostic reasoning. These percentages allowed us to find support for our theory

that adopting this interpretation of probability can significantly account for violations of

patterns of inferences within explaining away.

The prediction of the propensity interpretation, however, are not limited to situations

exhibiting explaining away. It also applies to any contexts where probabilities could be

interpreted as established propensities, especially if they include causal-probabilistic el-

ements. These include common-effect structures in general (not just those exhibiting

explaining away), but also common-causes and chain structures as well as simple two-

node cause-effect structures. Specifically, in simple two-node structures the propensity

interpretation could explain adherence to the prior and conservatism in belief updating,

which seem to be often found in studies employing paradigms where probabilities are
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well-defined stochastic properties of an environment (Erev, Wallsten, & Budescu, 1994).

This is particularly interesting as the propensity interpretation’s prediction in the two-node

cases are in direct opposition to the well-known base rate neglect where people partially or

completely ignore the priors of causes (Barbey & Sloman, 2007; Eddy, 1982; Gigerenzer

& Hoffrage, 1995; Tversky & Kahneman, 1974). The situations where we think that the

propensity interpretation (or anchoring at the base rate) will be more pronounced than the

base rate neglect are those that are characterized by (i) a deterministic set-up, (ii) clearly

defined stochastic properties of (physical) systems, and (iii) clear causal-mechanistic re-

lations between the parts of the (physical) system or between multiple physical systems.

The situations involving social interactions where relations are less deterministic or less

clearly related in a causal-mechanistic way would, in our opinion, be more prone to people

neglecting the priors. These should be explored in the future work.

Finally, we would like to touch on the normative status of the propensity hypothesis. As

the propensity interpretation is one of the interpretations of probability one might think that

it should agree with the normative account. However, as mentioned in the introduction, the

problems for propensity interpretation have been raised, such the Humphreys’s paradox,

that challenge the idea that it can be reconciled with the axioms of probability which

are the bedrocks of the normative account. Furthermore, the propensity interpretation’s

predictions that the probability of a cause does not change in light of an effect (and in light

of additionally learning the other cause has obtained) goes against the Bayesian updating

(also known as ‘conditionalization’) which as a consequence has that an agent following

the propensity interpretation in this case is not uniquely minimising the inaccuracy of its

beliefs when that inaccuracy is measured with a proper scoring rule such as the Brier score

(for details see Pettigrew, 2016). On the other hand, in Section 2.2 we have seen that,

under certain conditions, the propensity interpretation can be a good approximation of the

normative account. It is, however, outside the scope of this paper to argue for or against
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the normative status of the propensity interpretation. We simply find that the propensity

interpretation is a good descriptive account of the findings on explaining away.

5.3. Limitations

A few important limitations of the current study are in order. First, in both experiments

priors and conditional probabilities have been communicated textually and graphically to

participants. We have not explored whether our findings replicate when participants are

presented with learning data. Since with learning trials priors would not be ‘established’

but inferred from data and function as estimates of priors, we expect the propensity inter-

pretation to be less pronounced. As a consequence we would expect less participants to

stay at the priors in diagnostic reasoning and explaining away compared to the findings

in the current study. However, we would still expect participants to split the probability

space in diagnostic reasoning as per the diagnostic split. This is supported by Rottman and

Hastie (2016) who utilized learning trials in their study.

Second, we have only considered explaining away in a deterministic set-up. Admit-

tedly this is fairly limiting from a perspective of the ecological validity of our findings.

We proposed further avenues of research with respect to this limitation and have also ar-

gued that we expect to find similar results with respect to both hypotheses even in less

deterministic set-ups.

Third, in both experiments we have used the same quantitative response scale that pro-

moted participants enter a number between 0 and 100 eliciting from them the probability

with which the participants believed a certain event (a coin landing Heads) would happen.

However, other response scale formats are available. For instance, a frequency format re-

sponse scale (Gigerenzer & Hoffrage, 1995) would ask participants to provide the number

of coins (that are like the coins in the cover story) that they would expect to land Heads

given that the light bulb turned on out of the total number of these coins that land Heads.
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The primary reasons we have not used, for instance, the frequency format response scale

is that (i) given the events in our cover stories are token events that had occurred only once

(Coin 1 landed once, Ball 1 was picked for a container once, and Michael is coming to a

party at a particular location on a particular time) the frequency format (which refers to a

frequency with which an outcome occurs in a sequence of similar events) would not have

fit well with the single occurrences of token events and (ii) eliciting frequencies from par-

ticipants would, we believe, steer them away from the propensity probability interpretation

towards the frequency interpretation (which is out of the scope of the current paper) thus

reducing the power of our experiments. However, further studies should explore differ-

ent response scales formats, such as the frequency format, that would arguably put more

emphasis on different probability interpretation, like the frequency probability interpreta-

tion. This would allow for a further exploration of the role of probability interpretations in

explaining away and causal reasoning in general.

Fourth, we recognize that in some cases it may not be straightforward to determine

whether probabilities are interpreted as propensities or in some other way. There is no

normative computational procedure that could tell how probabilities should be interpreted.

One can only provide arguments for or against a certain interpretation and rely on these

when testing in contexts embodying a certain interpretation. Most difficulties arise when

discussing possible borderline cases. For instance, some philosophers have argued that

probabilities in medical contexts, which are often employed in psychological experiments,

are on the border between epistemological and objective interpretations and could lean ei-

ther way (Gillies, 2000a). This, however, does not render empirical exploration of people’s

intuitions about different probability interpretations futile. As long as there is a sufficient

consensus regarding how clear-cut are the specific contexts for testing particular interpre-

tations, one should be on a safe side employing these in their empirical studies. Even in

cases that are not clear-cut one can employ different elicitation methods to test different
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interpretations, e.g. one could use different phrasings of questions (c.f. Ülkümen et al.,

2016).

5.4. Conclusion

In our experiments we have replicated findings in the extant literature reporting insuffi-

cient explaining away. We have also shown that this insufficiency is not due to violations of

the independence assumption, as is sometimes suggested. Instead, we found that the insuf-

ficiency can largely be accounted by the two hypotheses, i.e. the diagnostic split strategy

and propensity probability interpretation. Although we explored explaining away only in

a deterministic context, we regard this context as a good starting point from which further

research avenues emerge where the robustness of the two hypotheses could be addressed.

Appendix A

Here we show that Inequality 1 holds even when one or both causes in the explaining

away situation are inhibitory. First, notice that P(E | Ci) < P(E) if and only if P(Ci | E) <

P(Ci) and P(E | Ci) > P(E) if and only if P(Ci | E) > P(Ci) (proofs omitted). Then we

have that:

P(Ci | E) =
P(Ci)

∑
C j

P(C j) P(E | Ci,C j)∑
Ci,C j

P(Ci) P(C j) P(E | Ci,C j)

P(Ci | E) − P(Ci) = P(Ci)

∑
C j

P(C j) P(E | Ci,C j) −
∑

Ci,C j
P(Ci) P(C j) P(E | Ci,C j)∑

Ci,C j
P(Ci) P(C j) P(E | Ci,C j)

= P(Ci) P(∼Ci)

∑
C j

P(C j) P(E | Ci,C j) −
∑

C j
P(C j) P(E | ∼Ci,C j)∑

Ci,C j
P(Ci) P(C j) P(E | Ci,C j)

= P(Ci) P(∼Ci)
A − B∑

Ci,C j
P(Ci) P(C j) P(E | Ci,C j)

, where

A := P(Cj)
[
P(E | Ci,Cj) − P(E | ∼Ci,Cj)

]
, and
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B := P(∼Cj)
[
P(E | ∼Ci,∼Cj) − P(E | Ci,∼Cj)

]
.

Therefore, P(E | Ci) < P(E) if and only if A < B and P(E | Ci) > P(E) if and only if A > B.

To see how this result corresponds to explaining away, we write again Inequality 1:

P(E | Ci,Cj) P(E | ∼Ci,∼Cj) < P(E | Ci,∼Cj) P(E | ∼Ci,Cj)

It is easy to see that when, for instance, P(E | C1,C2) = 0, P(E | Ci,∼Cj) = 1 and

P(E | ∼C1,∼C2) = 1, both causes are inhibitory as P(Ci | E) < P(Ci) for both causes, but

Inequality 1 is still satisfied. Similarly, assuming the priors are equal, when P(E | C1,C2) =

P(E | ∼C1,∼C2) = 0, P(E | C1,∼C2) = 1 and P(E | ∼C1,C2) = .1, then cause C1 is gen-

erative (P(C1 | E) > P(Ci)) but cause C2 is inhibitory (P(C2 | E) < P(C2)). Nonetheless,

Inequality 1 remains satisfied.

Appendix B

Here we show that including participants’ average estimates regarding the indepen-

dence of C1 and C2 from Rottman and Hastie (2016, Experiment 1b) in the normative

model leads to the explaining away effect not being normatively warranted.

To perform the calculations we assume that P(Ci) = .25, P(E | Ci,Cj) = .75, P(E | Ci,∼Cj) =

P(E | ∼Ci,Cj) = .5, P(E | ∼Ci,∼Cj) = 0, as is stated in the study. There is some empirical

support that participants accepted P(E | Ci,Cj) = .75 (although there is a lot of variation

in participants’ estimates). There is, however, no data reported on whether participants ac-

cepted other parameters. Lastly, form the study we have that participants average estimates

regarding independence are P(Ci | Cj) = .45 and P(Ci | ∼Cj) = .35.

P(Ci | E,Cj) =
P(Ci,Cj,E)

P(Cj,E)
=

P(E | Ci,Cj) P(Ci | Cj) P(Cj)
P(E | Cj) P(Cj)

=
P(E | Ci,Cj) P(Ci | Cj)

P(E | Cj)
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=
P(E | Ci,Cj) P(Ci | Cj)∑
Ci

P(E | Ci,Cj) P(Ci | Cj)
=

.75 × .45
.75 × .45 + .5 × .55

≈ .55

P(Ci | E) =
P(Ci,E)

P(E)
=

P(E | Ci)P(Ci)
P(E | Ci)P(Ci) + P(E | ∼Ci)P(∼Ci)

=
P(Ci)

∑
C j

P(E | Ci,C j) P(C j | Ci)

P(Ci)
∑

C j
P(E | Ci,C j) P(C j | Ci) + P(∼Ci)

∑
C j

P(E | ∼Ci,C j) P(C j | ∼Ci)

=
.25 × (.75 × .45 + .5 × .55)

.25 × (.75 × .45 + .5 × .55) + .75 × (.5 × .35 + 0)
≈ .54

Therefore, as P(Ci | E) and P(Ci | E,Cj) are very close to each other, the amount of explain-

ing away is negligible with slightly going in the opposite direction to explaining away.
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